Garrido, M. IsabelJaramillo Aguado, Jesús ÁngelRangel, Yenny C.2023-06-202023-06-202010D. Bao, S.S. Chern, Z. Shen, “ An Introduction to Riemann-Finsler Geometry ”, Graduate Texts in Mathematics, 200, Springer-Verlag, New York, 2000. S. Deng, Z. Hou, The group of isometries of a Finsler space, Pacific J. Math. 207 (2002), 149 – 155. M.I. Garrido, J.A. Jaramillo, Variations on the Banach-Stone theorem, Extracta Math. 17 (2002), 351 – 383. M.I. Garrido, J.A. Jaramillo, Homomorphisms on function lattices, Monatsh. Math. 141 (2004), 127 – 146. M.I. Garrido, J.A. Jaramillo, Lipschitz-type functions on metric spaces, J. Math. Anal. Appl. 340 (2008), 282 – 290. M.I. Garrido, J.A. Jaramillo, Y. Rangel, Algebras of Differentiable Functions on Riemannian Manifolds, Bull. Lond. Math. Soc. 41 (2009), 993 – 1001. M.I. Garrido, J.A. Jaramillo, Y. Rangel, Smooth approximation of Lipschitz functions on Finsler Manifolds, preprint. R.E. Greene, H. Wu, C1 approximations of convex, subharmonic and plurisubharmonic functions, Ann. Sci. Ecole Norm. Sup. (4) 12 (1979),47 – 84. J.R. Isbell, Algebras of uniformly continuous functions, Ann. of Math.(2) 68 (1958), 96 – 125. S.B. Myers, Algebras of differentiable functions, Proc. Amer. Math. Soc. 5 (1954), 917 – 922. S.B. Myers, N.E. Steenrod, The group of isometries of a Riemannian manifold, Ann. of Math. (2) 40 (1939), 400 – 416. M. Nakai, Algebras of some differentiable functions on Riemannian manifolds, Japan. J. Math. 29 (1959), 60 – 67.0213-8743https://hdl.handle.net/20.500.14352/43816Proceedings of the Seventh Italian-Spanish Conference of General Topology and its Applications, Badajoz (Spain), September 7-10, 2010.Our aim in this note is to give an extension of the classical Myers-Nakai theorem in the context of Finsler manifolds. To achieve this, we provide a general result in this line for subalgebras of bounded Lipschitz functions on length metric spaces. We also establish some connection with the uniform approximation of bounded Lipschitz functions by functions in the subalgebra, keeping control on the Lipschitz constantsengLip-density and algebras of Lipschitz functions on metric spaces.journal articlehttp://www.eweb.unex.es/eweb/extracta/Vol-25-3/25B3Jaramillo.pdfhttp://www.eweb.unex.es/eweb/open access517.98515.124Algebras of Lipschitz functionsapproximationFinsler manifolds.Análisis funcional y teoría de operadoresTopología1210 Topología