Llavona, José G.Moraes, Luiza A.2023-06-202023-06-202004-030034-531810.2977/prims/1145475970https://hdl.handle.net/20.500.14352/50057Let E = F' where F is a complex Banach space and let pi(1) : E" - E circle plus F-perpendicular to --> E be the canonical projection. Let P(E-n) be the space of the complex valued continuous n-homogeneous polynomials defined in E. We characterize the elements P is an element of P(E-n) whose Aron-Berner extension coincides with P circle pi(1). The case of weakly continuous polynomials is considered. Finally we also study the same problem for holomorphic functions of bounded type.engThe Aron-Berner extension for polynomials defined in the dual of a Banach spacejournal articlehttp://www.ems-ph.org/journals/show_issue.php?issn=0034-5318&vol=40&iss=1http://www.ems-ph.org/journals/journal.php?jrn=primsrestricted access517.5Homogeneous polynomialsHolomorphic functionsWeak star topology.Análisis funcional y teoría de operadores