Gascón, Francisco G.Peralta Salas, DanielRuiz Sancho, Jesús María2023-06-202023-06-202000-050022-248810.1063/1.533280https://hdl.handle.net/20.500.14352/58415It is shown that when a dynamical system X0 with a proper set of global first integrals is perturbed, the phase space region accessible to the orbits of the perturbed vector field X0+Xp is bounded (we are assuming here that the time variable runs over a finite interval). A polynomial new bound is obtained for the separation between the solutions of X0 and X0+Xp. Perturbations near an equilibrium point of X0 are also considered.engA separation bound for non-Hamiltonian differential equations with proper first integralsjournal articlehttp://jmp.aip.org/resource/1/jmapaq/v41/i5/p2922_s1http://jmp.aip.orgrestricted access517.9Dynamical systemglobal first integralsorbitsequilibrium pointpartial differential equationsperturbation theoryEcuaciones diferenciales1202.07 Ecuaciones en Diferencias