Panin, G. N.Piqueras de Noriega, JavierSochinskii, N.Dieguez, E.2023-06-202023-06-201997-02-171. M. Piechotka and E. Kaldis, Nucl. Instrum. Methods Phys. Res. A 283, 111 (1989). 2. G. Entine, P. Waer, T. Tiernan, and M. R. Squillante, Nucl. Instrum. Methods Phys. Res. A 283, 282 (1989). 3. V. I. Ivanov, V. A. Garbusin, P. G. Dorogov, A. E. Loutchanski, and V. V. Kondrashov, IEEE Trans. Nucl. Sci. 42, 258 (1995). 4. Y. J. Wang, J. S. Iwanczyk, and B. E. Patt, IEEE Trans. Nucl. Sci. 41, 910 (1994). 5. W. Dusi, E. Caroli, G. Di Cocco, A. Donati, G. Landini, G. Ramunno, M. Amann, J. M. Koebel, P. Siffert, D. Grassi, and E. Perillo, Nucl. Instrum. Methods Phys. Res. A 348, 531 (1994). 6. M. G. Astles, Properties of Narrow Gap Cadmium-Based Compounds, edited by P. Capper (Institute of Electrical Engineers, London, 1994) pp. 494–500 and references therein. 7. N. V. Sochinskii, M. D. Serrano, E. Dieguez, F. Agullo-Rueda, U. Pal, J. Piqueras, and P. Fernandez, J. Appl. Phys. 77, 2806 (1995). 8. U. Pal, P. Fernandez, J. Piqueras, N. V. Sochinskii, and E. Dieguez, J. Appl. Phys. 78, 1992 (1995). 9. U. Pal, J. Piqueras, M. D. Serrano, N. V. Sochinskii, and E. Dieguez, Appl. Phys. A 61, 645 81995). 10. N. V. Sochinskii, M. D. Serano, V. N. Babentsov, N. I. Tarbaev, J. Garrido, and E. Diéguez, Semicond. Sci. Technol. 9, 1713 (1994). 11. N. V. Sochinskii, C. Marin, J. C. Rojo, and E. Diéguez (unpublished). 12. F. Dominguez-Adame, J. Piqueras, and P. Fernandez, Appl. Phys. Lett. 58, 257 (1991). 13. H. C. Casey and J. S. Jayson, J. Appl. Phys. 42, 2774 81971). 14. U. Pal, P. Fernandez, J. Piqueras, M. D. Serrano, and E. Diéguez, Inst. Phys. Conf. Ser. 135, 177 (1994). 15. C. Scharager, P. Siffert, P. Hoschl, P. Moravec, and M. Vanecek, Phys. Status Solidi A 66, 87 (1981). 16. W. Jantsch and G. Hendorfer, J. Cryst. Growth 101, 404 (1990). 17. D. M. Hofmann, W. Stadler, K. Oettinger, B. K. Meyer, P. Omling, M. Salk, K. W. Benz, E. Wiegel, and G. Muller-Vogt, Mater. Sci. Eng. B 16, 128 (1993). 18. F. J. Bryant and E. Webster, Phys. Status Solidi B 49, 499 (1972). 19. J. C. Clark and E. D. Jones, Ref. 6, pp. 482–486. 20. E. D. Jones and J. C. Clark, Ref. 6, pp. 472–481.0003-695110.1063/1.118237https://hdl.handle.net/20.500.14352/59161© 1997 American Institute of Physics. G. P. and N. S. thank Spanish MEC for research grants. This work was supported by the DGICYT (Project No. PB 93-1256) and CICYT (Project No. ESP95-0148).The aα-HgI_2/CdTe:Ce heterostructures have been studied by cathodoluminescence (CL) in the scanning electron microscope. The alpha-HgI2 expitaxial growth was shown to cause an enhancement of the CL intensity in a layer of the substrate extending up to about 500 mu m from the α-Hgl_2 /CdTe:Ge interface. CL spectra of the layer reveal the appearance of a band related to tellurium vacancies as well as the decrease of the emission attributed to defect complexes involving Ge. The data obtained indicate that Ge-impurity gettering and V-Te generation at the interface take place during α-Hgl_2 epitaxial growth.engEffect of α-Hgl_2 epitaxial growth on the defect structure of CdTe:Ge substratesjournal articlehttp://dx.doi.org/10.1063/1.118237http://scitation.aip.org/open access538.9CathodoluminescenceCrystalsWafersFísica de materiales