Nogales Díaz, EmilioGarcía, José A.Méndez Martín, BianchiPiqueras de Noriega, Javier2023-06-202023-06-202007-02-011.Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001). 2. Y. P. Song, H. Z. Zhang, C. Lin, Y. W. Zhu, G. H. Li, F. H. Yang, and D. P. Yu, Phys. Rev. B 69, 075304 (2004). 3. D. P. Yu, J. L. Bubendorff, J. F. Zhou, Y. Leprince-Wang, and M. Troyon, Solid State Commun. 124, 417 (2002). 4. L. Binet and D. Gourier, J. Phys. Chem. Solids 59, 1241 (1998). 5. E. Nogales, B. Méndez, and J. Piqueras, Appl. Phys. Lett. 86, 113112 (2005). 6. T. Miyata, T. Nakatani, and T. Minami, J. Lumin. 87-89, 1183 (2000). 7. T. Li, S. G. Yang, and Y. W. Du, Nanotechnology 16, 365 (2005). 8. I. S. Altman, P. V. Pikhitsa, M. Choi, H. J. Song, A. G. Nasibulin, and E. I. Kauppinen, Phys. Rev. B 68, 125324 (2003). 9. I. S. Altman, P. V. Pikhitsa, M. Choi, J. I. Jeong, H.-J. Song, I. E. Agranovski, and T. E. Bostrom, Appl. Phys. Lett. 83, 3689 (2003). 1. 0P. Kisliuk and C. A. Moore, Phys. Rev. 160, 307 (1967). 11. M. Yamaga, B. Henderson, K. P. O’Donnell, and G. Yue, Appl. Phys. B: Photophys. Laser Chem. 51, 132 (1990). 12. T. H. Maiman, Nature (London) 187, 493 (1960). 13. B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon, Oxford, 1989). 14. F. Agulló-López, C. R. A. Catlow, and P. D. Townsend, Point Defects in Materials (Academic, London, 1988). 15. W. H. Fonger and C. W. Struck, Phys. Rev. B 11, 3251 (1975). 16. H. H. Tippins, Phys. Rev. 137, A865 (1965). 17. V. I. Vasyltsiv, Ya. I. Rym, and Ya. M. Zakharko, Proc. SPIE 2698, 255 (1996). 18. S. Fujihara and Y. Shibata, J. Lumin. 121, 470 (2006). 19. L. Binet and D. Gourier, Appl. Phys. Lett. 77, 1138 (2000). 20. M. Toth and M. R. Phillips, Appl. Phys. Lett. 75, 3983 (1999). 21. M. A. Blanco, M. B. Sahariah, H. T. Jiang, A. Costales, and R. Pandey, Phys. Rev. B 72, 184103 (2005). 22. D. Vivien, B. Viana, A. Revcolevschi, J. D. Barrie, B. Dunn, P. Nelson, and O. M. Stafsudd, J. Lumin. 39, 29 (1987).0021-897910.1063/1.2434834https://hdl.handle.net/20.500.14352/50945© 2007 American Institute of Physics. This work has been supported by MEC Project No. MAT2003-00455 and UCM-CM Group 910146.Red luminescence emission from chromium doped ß-Ga_2O_3 nanowires has been studied by means of photoluminescence (PL) techniques. PL excitation shows several bands in the ultraviolet-visible region. Time decay values, obtained by time resolved PL, at different temperatures fit a three level model with thermal population of the upper level from the middle one. From the results, the origin of the emission is assigned to Cr^3+ ions in the ß-Ga_2O_3 host, and values for the energy level separation and Huang-Rhys factor of the broad^4T_2^(-4)A_2 emission are estimated.engRed luminescence of Cr in ß-Ga_2O_3 nanowiresjournal articlehttp://jap.aip.org/resource/1/japiau/v101/i3/p033517_s1http://jap.aip.orgopen access358.9OxideRubyRadiationCrystalsEmeraldFísica de materiales