Mendoza Casas, José2023-06-212023-06-2119820025-583110.1007/BF01456405https://hdl.handle.net/20.500.14352/64686Let Ω be a nonempty set, and let Σ be a field of subsets of Ω. If E is a locally convex space we denote by S(Σ;E) the vector space of all Σ-simple functions defined on Ω with values in E, and by B(Σ;E) the vector space of all functions defined on Ω with values in E which are uniform limits of Σ-simple functions. We give some results characterizing when the spaces S(Σ;E) and B(Σ;E) endowed with the uniform convergence topology are barrelled or infrabarrelled.engBarrelledness conditions on S(Σ;E) and B(Σ;E).journal articlehttp://www.springerlink.com/content/x35m3k7433761318/http://www.springerlink.com/restricted access517.98uniform convergence topologybarrelledinfrabarrelleduniform limit of vector valued simple functionsAnálisis funcional y teoría de operadores