Santos, Harrison D. A.Zabala Gutiérrez, IreneShen, YingliLifante, JoséXimendes, ErvingLaurenti, MarcoMéndez González, DiegoMelle Hernández, SoniaGómez Calderón, ÓscarLópez Cabarcos, EnriqueFernández Monsalve, NuriaChavez Coria, IreneLucena Agell, DanielMonge, LuisMackenzie, Mark D.Marqués Hueso, JoséJones, Callum M. S.Jacinto, CarlosRosal, Blanca, delKar, Ajoy K.Rubio Retama, Benito JorgeJaque García, Daniel2023-06-162023-06-162020-06-10Santos, H. D. A., Zabala Gutiérrez, I., Shen, Y. et al. «Ultrafast Photochemistry Produces Superbright Short-Wave Infrared Dots for Low-Dose in Vivo Imaging». Nature Communications, vol. 11, n.o 1, junio de 2020, p. 2933. DOI.org (Crossref), https://doi.org/10.1038/s41467-020-16333-2.2041-172310.1038/s41467-020-16333-2https://hdl.handle.net/20.500.14352/6329Optical probes operating in the second near-infrared window (NIR-II, 1,000-1,700 nm), where tissues are highly transparent, have expanded the applicability of fluorescence in the biomedical field. NIR-II fluorescence enables deep-tissue imaging with micrometric resolution in animal models, but is limited by the low brightness of NIR-II probes, which prevents imaging at low excitation intensities and fluorophore concentrations. Here, we present a new generation of probes (Ag2S superdots) derived from chemically synthesized Ag2S dots, on which a protective shell is grown by femtosecond laser irradiation. This shell reduces the structural defects, causing an 80-fold enhancement of the quantum yield. PEGylated Ag2S superdots enable deep-tissue in vivo imaging at low excitation intensities (<10 mW cm−2) and doses (<0.5 mg kg−1), emerging as unrivaled contrast agents for NIR-II preclinical bioimaging. These results establish an approach for developing superbright NIR-II contrast agents based on the synergy between chemical synthesis and ultrafast laser processing.engAtribución 3.0 Españahttps://creativecommons.org/licenses/by/3.0/es/Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imagingjournal articlehttps://doi.org/10.1038/s41467-020-16333-2https://www.nature.com/articles/s41467-020-16333-2open access535.37681.785.45543.422.3Fluorescence imagingNanoparticlesÓptica geométrica e instrumentalTécnicas de la imagen2209.06 Óptica geométrica