Schmidt, RainerPandey, ShubhraFiorenza, PatrickSinclair, Darek C.2023-06-202023-06-2020131) M. A. Subramanian, A. W. Sleight, Solid State Sci., 2002, 4, 347. 2) A. P. Ramírez, M. A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S. M. Shapiro, Solid State Commun., 2000, 115, 217. 3) A. M. Glazer, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1972, 28, 3384. 4) S. H. Byeon, S. S. Lee, J. B. Parise, P. M. Woodward, Chem. Mater., 2006, 18, 3873. 5) L. Wu, Y. Zhu, S. Park, S. Shapiro, G. Shirane, J. Tafto, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, 71, 014118. 6) M. A. Subramanian, D. Li, N. Duan, B. A. Reisner, A. W. Sleight, J. Solid State Chem., 2000, 151, 323. 7) C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, A. P. Ramírez, Science, 2001, 293, 673. 8) S.-Y. Chung, I.-D. Kim, S.-J. L. Kang, Nat. Mater., 2004, 3, 774. 9) T. B. Adams, D. C. Sinclair, A. R. West, Adv. Mater., 2002, 14, 1321. 10) R. Schmidt, D. C. Sinclair, Chem. Mater., 2010, 22, 6 11) V. Brizé, G. Gruener, J. Wolfman, K. Fatyeyeva, M. Tabellout, M. Gervais, F. Gervais, Mater. Sci. Eng., B, 2006, 129, 135. 12) A. R. West, T. B. Adams, F. D. Morrison, D. C. Sinclair, J. Eur. Ceram. Soc., 2004, 24, 1439. 13) D. C. Sinclair, T. B. Adams, F. D. Morrison, A. R. West, Appl. Phys. Lett., 2002, 80, 2153. 14) P. Lunkenheimer, R. Fichtl, S. G. Ebbinghaus, A. Loidl, Phys. Rev. B: Condens. Matter Mater. Phys., 2004, 70, 172102. 15) T. B. Adams, D. C. Sinclair, A. R. West, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, 73, 094124. 16) M. C. Ferrarelli, D. C. Sinclair, A. R. West, H. A. Dabkowska, A. Dabkowski, G. M. Luke, J. Mater. Chem., 2009, 19, 5916. 17) G. Deng, T. Yamada, P. Muralt, Appl. Phys. Lett., 2007, 91, 202903. 18) M. Li, Z. Shen, M. Nygren, A. Feteira, D. C. Sinclair, A. R. West, J. Appl. Phys., 2009, 106, 104106. 19) R. D. Shannon, J. Appl. Phys., 1993, 73, 348. 20) D. Capsoni, M. Bini, V. Massarotti, G. Chiodelli, M. C. Mozzatic, C. B. Azzoni, J. Solid State Chem., 2004, 177, 4494. 21) R. Schmidt, M. C. Stennett, N. C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D. C. Sinclair, J. Eur. Ceram. Soc., 2012, 32, 3313. 22) I. R. Costa, M. Li, J. R. Frade, D. C. Sinclair, RSC Adv., 2013, 3, 7030. 23) M. Li, A. Feteira, D. C. Sinclair, A. R. West, Appl. Phys. Lett., 2006, 88, 232903. 24) J. Li, A. W. Sleight, M. A. Subramanian, Solid State Commun., 2005, 135, 260. 25) T.-T. Fang, L.-T. Mei, H.-F. Ho, Acta Mater., 2006, 54, 2867. 26) R. A. De Souza, M. S. Saiful, E. Ivers-Tiffee, J. Mater. Chem., 1999, 9, 1621. 27) A. R. West, Basic solid state chemistry, Wiley: New York, 1988. 28) P. Fiorenza, R. Lo Nigro, A. Sciuto, P. Delugas, V. Raineri, R. Toro, M. Catalano, G. Malandrino, J. Appl. Phys., 2009, 105, 061634. 29) G. Deng, N. Xanthopoulos, P. Muralt, Appl. Phys. Lett., 2008, 92, 172909. 30) L. Zhang, Z.-J. Tang, Phys. Rev. B: Condens. Matter Mater. Phys., 2004, 70, 174306. 31) T.-T. Fang, L.-T. Mei, J. Am. Ceram. Soc., 2007, 90, 638. 32) Y. Zhu, J. C. Zheng, L. Wu, A. I. Frenkel, J. Hanson, P. Northrup, W. Ku, Phys. Rev. Lett., 2007, 99, 037602. 33) R. D. Shannon, C. T. Prewitt, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1969, 25, 925. 34) M. Avdeev, V. B. Nalbandyan, Inorg. Chem., 2006, 45, 2217. 35) R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, 32, 751. 36) Impedance Spectroscopy, ed. J. R. Macdonald, John Wiley & Sons, New York, 1987. 37) P. Fiorenza, R. L. Nigro, C. Bongiorno, V. Raineri, M. C. Ferarrelli, D. C. Sinclair, A. R. West, Appl. Phys. Lett., 2008, 92, 182907. 38) P. Fiorenza, V. Raineri, M. C. Ferrarelli, D. C. Sinclair, R. Lo Nigro, Nanoscale, 2011, 3, 1171. 39) H. Scher, R. Zallen, J. Chem. Phys., 1970, 53, 3759. 40) B. Vertruyen, R. Cloots, M. Ausloos, J.-J. Fagnard, P. Vanderbemden, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, 75, 165112. 41) M. Veith, S. Ren, M. Wittmar, H. Bolz, J. Solid State Chem., 2009, 182, 2930. 42) J. T. S. Irvine, D. C. Sinclair, A. R. West, Adv. Mater., 1990, 2, 132. 43) R. Schmidt, Impedance Spectroscopy of Electroceramics, in Ceramic Materials Research Trends, ed. P. B. Lin, Novascience Publishers, Hauppauge, 2007, p. 321. 44) R. Schmidt, J. Ventura, E. Langenberg, N. M. Nemes, C. Munuera, M. Varela, M. García-Hernández, C. León, J. Santamaría, Phys. Rev. B: Condens. Matter Mater. Phys., 2012, 86, 035113. 45) J. T. S. Irvine, D. C. Sinclair, A. R. West, Adv. Mater., 1990, 2, 132. 46) E. J. Abram, D. C. Sinclair, A. R. West, J. Electroceram., 2003, 10, 165. 47) R. Schmidt, W. Eerenstein, T. Winiecki, F. D. Morrison, P. A. Midgley, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, 75, 245111. 48) N. F. Mott, W. D. Twose, Adv. Phys., 1961, 10, 107. 49) C. Kant, T. Rudolf, F. Mayr, S. Krohns, P. Lunkenheimer, S. G. Ebbinghaus, A. Loidl, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 77, 045131. 50) Y. Liu, R. L. Withers, X. Y. Wei, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, 72, 134104. 51) P. Delugas, P. Alippi, V. Fiorentini, V. Raineri, Phys. Rev. B: Condens. Matter Mater. Phys., 2010, 81, 081104.2046-206910.1039/c3ra41319ehttps://hdl.handle.net/20.500.14352/44704© The Royal Society of Chemistry. The authors acknowledge funding from the European Union under the NUOTO project and grant agreement no. 226716 (FP7/2007-2013). DCS thanks the EPSRC (UK) for funding (EP/ G005001/11). RS acknowledges a Ramón y Cajal fellowship from the MINECO (Spain).A combined powder X-ray lattice parameter and ceramic impedance spectroscopy study is presented on materials within the CaO–CuO–TiO_(2) ternary phase diagram. Several compositions containing CaCu_(3)Ti_(4)O_(12) (CCTO) and small amounts of secondary phases such as TiO_(2), CaTiO_(3) and CuO are analysed and two different defect mechanisms are identified as the cause of the non-stoichiometry in CCTO. The first mechanism involves a variation in the Cu content, which explains the large differences in the intrinsic bulk and extrinsic grain boundary (GB) resistance, and the formation of the ceramic internal barrier layer capacitor (IBLC) structure. The second mechanism is associated with Ca–Cu anti-site disorder causing an unusually high intrinsic bulk permittivity above that predicted from Clausius–Mossotti calculations.engAtribución 3.0 EspañaNon-stoichiometry in "CaCu_(3)Ti_(4)O_(12)" (CCTO) ceramicsjournal articlehttp://dx.doi.org/10.1039/c3ra41319ehttp://pubs.rsc.org/open access537Giant dielectric-constantBarrier layer capacitorEffective ionic-radiiCopper-titanateOxidePerovskitesConductionFluorides.ElectricidadElectrónica (Física)2202.03 Electricidad