Gómez de Castro, Ana I.2023-06-172023-06-1720181. Fressin, F.; Torres, G.; Charbonneau, D.; Bryson, S.T.; Christiansen, J.; Dressing, C.D.; Jenkins, J.M.; Walkowicz, L.M.; Batalha, N.M. The False Positive Rate of Kepler and the Occurrence of Planets. Astrophys. J. 2013, 766, 81–101. 2. Luhman, K.L.; Morley, C.V.; Burgasser, A.J.; Esplin, T.L.; Bochanski, J.J. Near-infrared Detection of WD 0806-661 B with the Hubble Space Telescope. Astrophys. J. 2014, 794, 16. 3. Rugheimer, S.; Kaltenegger, L.; Zsom, A.; Segura, A.; Sasselov, D. Spectral Fingerprints of Earth-like Planets Around FGK Stars. Astrobiology 2013, 13, 251. 4. Beichman, C.A.; Krist, J.; Trauger, J.T.; Greene, T.; Oppenheimer, B.; Sivaramakrishnan, A.; Doyon, R.; Boccaletti, A.; Barman, T.S.; Rieke, M. Imaging Young Planets from Ground and Space. Publ. Astron. Soc. Pac. 2010, 122, 162. 5. Beichman, C.A.; Green, T.P. A White Paper Submitted to The National Academy of Science’s Committee on Exoplanet Science Strategy: Observing Exoplanets with the James Webb Space Telescope. arXiv, 2018; arXiv:1803.03730. 6. Schwieterman, E.W.; Kiang, N.Y.; Parenteau, M.N.; Harman, C.E.; DasSarma, S.; Fisher, T.M.; Arney, G.N.; Hartnett, H.E.; Reinhard, C.T.; Olson, S.L.; et al. Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life. Astrobiology 2018, 18, 663. 7. Ricker, G.R.; Winn, J.N.; Vanderspek, R.; Latham, D.W.; Bakos, G.Á.; Bean, J.L.; Berta-Thompson, Z.K.; Brown, T.M.; Buchhave, L.; Butler, N.R.; et al. Transiting Exoplanet Survey Satellite (TESS). Proc. SPIE 2014, 9143, 914320. 8. Broeg, C.; Fortier, A.; Ehrenreich, D.; Alibert, Y.; Baumjohann, W.; Benz, W.; Deleuil, M.; Gillon, M.; Ivanov, A.; Liseau, R.; et al. CHEOPS: A Transit Photometry Mission for ESA’s Small Mission Programme. Hot Planets and Cool Stars, Garching, Germany. EPJ Web Confer. 2013, 47, 03005. 9. Rauer, H.; Catala, C.; Aerts, C.; Appourchaux, T.; Benz, W.; Brandeker, A.; Christensen-Dalsgaard, J.; Deleuil, M.; Gizon, L.; Goupil, M.J.; et al. The PLATO 2.0 mission. Exp. Astron. 2014, 38, 249. 10. Pascale, E.; Bezawada, N.; Barstow, J.; Beaulieu, Je.; Bowles, N.; Foresto, V.C.d.; Coustenis, A.; Decin, L.; Drossart, P.; Eccleston, P.; et al. The ARIEL space mission. In Proceedings of the SPIE Astronomical Telescopes + Instrumentation, Austin, TX, USA, 10–15 June 2018. 11. Chesnokov, Y.M. A space-based very-high resolution telescope. Russ. Space Bull. 1993, 1, 18–21. 12. Hyde, R.A. Eyeglass: Very large aperture diffractive telescopes. Appl. Opt. 1999, 38, 4198–4212. 13. Early, J.T. Solar sail—Fresnel zone plate lens for a large aperture based telescope. AIAA 2002, 1705, 3773–3778. 14. Koechlin, L.; Serre, D.; Deba, P.; Pelló, R.; Peillon, C.; Duchon, P.; de Castro, A.I.; Karovska, M.; Désert, J.M.; Ehrenreich, D.; Hebrard, G. The Fresnel interferometer imager. Exp. Astron. 2009, 23, 379–402. 15. Koechlin, L.; Rivet, J.P.; Deba, P.; Serre, D.; Raksasataya, T.; Gili, R.; David, J. First high dynamic range and high resolution images of the sky obtained with a diffractive Fresnel array telescope. Exp. Astron. 2012, 33, 129–140. 16. Roux, W.; Koechlin, L. Improvements on Fresnel arrays for high contrast imaging. Exp. Astron. 2018, 45, 21–40. 17. Copy, C.J.; Starkman, G.D. The Big Occulting Steerable Satellite (BOSS). Astrophys. J. 2000, 532, 581–592. 18. Cash, W. Detection of Earth-like planets around nearby stars using a petal-shaped occulter. Nature 2006, 442, 51–53. 19. Vanderbei, R.J.; Cady, E.; Kasin, N.J. Optimal occulter design for finding extrasolar planets. Astrophys. J. 2007, 665, 794–798. 20. Vanderbei, R.J.; Spergel, D.N.; Kasdin, N.J. Circularly Symmetric Apodization via Star-shaped Masks. Astrophys. J. 2003, 599, 686–694. 21. Novicki, M.C.; Warwick, S.; Smith, D.K.; Richards, M.C.; Harness, A. Suppression of astronomical sources using the McMath-Pierce Solar Telescope and starshades with flight-like optics. In Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave; 2016; SPIE (Society of Photo-Optical Instrumentation Engineers): Bellingham, WA, USA; Volume 9904, p. 26. 22. Harness, A.; Cash, W.; Warwick, S. High contrast observations of bright stars with a starshade. Exp. Astron. 2017, 44, 209–237. 23. Gaudi, B.S.; Seager, S.; Mennesson, B.; Kiessling, A.; Warfield, K.; Kuan, G.; Cahoy, K.; Clarke, J.T.; Domagal-Goldman, S.; Feinberg, L.; et al. The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Interim Report. arXiv, 2018; arXiv:1809.09674. 24. Kuchner, M.J.; Traub, W.A. A Coronagraph with a Band-limited Mask for Finding Terrestrial Planets. Astrophys. J. 2002, 570, 900. 25. Oppenheimer, B.R.; Hinkley, S. High-Contrast Observations in Optical and Infrared Astronomy. Annu. Rev. Astron. Astrophys. 2009, 47, 253. 26. Ruane, G.; Jewell, J.; Mawet, D.; Pueyo, L.; Shaklan, S. Apodized vortex coronagraph designs for segmented aperture telescopes. Proc. SPIE 2016, 9912, 99122. 27. The LUVOIR Team. The LUVOIR Mission Concept Study Interim Report. arXiv, 2018; arXiv:1809.09668. 28. Pueyo, L.; Zimmerman, N.; Bolcar, M.; Groff, T.; Stark, C.; Ruane, G.; Jewell, J.; Soummer, R.; Laurent, K.S.; Wang, J.; et al. The LUVOIR architecture “A” coronagraph instrument. Proc. SPIE 2017, 10398, 20. 29. Spergel, D.; Gehrels, N.; Baltay, C.; Bennett, D.; Breckinridge, J.; Donahue, M.; Dressler, A.; Gaudi, B.S.; Greene, T.; Guyon, O.; et al. Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report. arXiv, 2015; arXiv:1503.03757. 30. Gómez de Castro, A.I.; Lecavelier, A.; D’Avillez, M.; Linsky, J.L.; Cernicharo, J. UV Capabilities to Probe the Formation of Planetary Systems: From the ISM to Planets. In Fundamental Questions in Astrophysics: Guidelines for Future UV Observatories; Springer: Dordrecht, The Netherlands, 2006; pp. 33–52. 31. Vidal-Madjar, A.; Des Etangs, A.L.; Désert, J.M.; Ballester, G.E.; Ferlet, R.; Hébrard, G.; Mayor, M. An extended upper atmosphere around the extrasolar planet HD209458b. Nature 2002, 422, 143–146. 32. Fuselier, S.A.; Burch, J.L.; Lewis, W.S.; Reiff, P.H. Overview of the image science objectives and mission phases. Space Sci. Rev. 2000, 91, 51–66. 33. McComas, D.J.; Allegrini, F.; Baldonado, J.; Blake, B.; Brandt, P.C.; Burch, J.; Clemmons, J.; Crain, W.; Delapp, D.; DeMajistre, R.; et al. The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) NASA Mission-of-Opportunity. Space Sci. Rev. 2009, 142, 157–231. 34. Gómez de Castro, A.I.; Beitia-Antero, L.; Ustamujic, S. On the feasibility of studying the exospheres of Earth-like exoplanets by Lyman-α monitoring. Detectability constraints for nearby M stars. Exp. Astron. 2018, 45, 147–163. 35. Gómez de Castro, A.I.; Appourchaux, T.; Barstow, M.A.; Barthelemy, M.; Baudin, F.; Benetti, S.; Blay, P.; Brosch, N.; Bunce, E.; de Martino, D.; et al. Building galaxies, stars, planets and the ingredients for life between the stars. The science behind the European Ultraviolet-Visible Observatory. Astrophys. Space Sci. 2014, 354, 229–246.2076-326310.3390/geosciences8120442https://hdl.handle.net/20.500.14352/19119The study and characterization of the exoplanets’ atmospheres and composition is in its infancy. The large facilities that will make feasible to image an exo-Earth are currently under study. This contribution to the special issue on “detection and characterization of extrasolar planets” is a summary on the current status of the design studies to build large space-based facilities working in the 100–3000 nm range for this purpose. The three basic designs: Fresnel imagers, starshades, and coronagraphs on large space telescopes are described. An outline of the pros and cons for each design is provided. The relevance of transmission spectroscopy to characterize exoplanets atmospheres is pointed out.engAtribución 3.0 EspañaImaging and Characterization of Extrasolar Planets with the Next Generation of Space Telescopesjournal articlehttps://doi.org/10.3390/geosciences8120442https://www.mdpi.com/2076-3263/8/12/442open access523.4524.3-54ExoplanetsAstronomical instrumentationSpace astronomyExoplanetasAstronomíaFísica (Física)Astrofísica22 Física