Carpio Rodríguez, Ana MaríaChapman, S.J.Howison, S.D.Ockendon, J.R.2023-06-202023-06-201997Carpio Rodríguez, A. M., Chapman, S. J., Howison, S. D., Ockedon, J. R. «Dynamics of Line Singularities». Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, editado por S. J. Chapman et al., vol. 355, n.o 1731, octubre de 1997, pp. 2013-24. DOI.org (Crossref), https://doi.org/10.1098/rsta.1997.0103.1364-503X10.1098/rsta.1997.0103https://hdl.handle.net/20.500.14352/57222The dynamics of line singularities in three different physical systems are considered, namely vortices in an inviscid fluid, vortices in a type-II superconductor, and dislocations in an elastic crystal. When the core of the singularity can be regularized with a continuum model, as is the case for superconducting and fluid vortices, the dynamics can be derived systematically in the asymptotic limit as the core radius tends to zero. The asymptotic analysis is more difficult when the core of the singularity is so small as to demand an atomic model, as is the case for dislocations, where the derivation of a law of motion is still an open problem in the mathematical sense.engDynamics of line singularitiesjournal articlehttps://doi.org/10.1098/rsta.1997.0103https://royalsocietypublishing.org/doi/10.1098/rsta.1997.0103restricted access531.3Type-II superconductorElastic crystalContinuum modelCore radiusAsymptotic analysisDislocationsHidrodinámica3301.12 Hidrodinámica