Cox, Joel D.Singh, Mahi R.Antón Revilla, Miguel ÁngelCarreño Sánchez, Fernando2023-06-192023-06-192013-08-29[1] M. Achermann, J. Phys. Chem. Lett. 1, 2837-2843 (2010). [2] M. Fu, K. Wang, H. Long, G. Yang, P. Lu, F. Hetsch, A. S. Susha, and A. L. Rogach, Appl. Phys. Lett. 100, 063117 (2012). [3] S. Xiao, H. Gong, X. Su, J. Han, Y. Han, M. Chen, and Q. Wang, J. Phys. Chem. C 111, 10185-10189 (2007). [4] X. Li, F. -J. Kao, C. -C. Chuang, and S. He, Opt. Express 18, 11335 (2010). [5] E. Shaviv and U. Banin, ACS Nano 4, 1529-1538 (2010). [6] P. M. Jais, C. von Bilderling, and A. V. Bragas, Papers in Physics 3, 030002 (2011). [7] X. Feng, Y. Chen, and D. Hou, Physica B 406, 1702-1705 (2011). [8] N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, Nano Lett. 7 941-945 (2007). [9] Y. Zhang, D. J. S. Birch, and Y. Chen, Appl. Phys. Lett. 99 103701 (2011). [10] A. Ray, Y.-E. K. Lee, G. Kim, and R. Kopelman, Small 8, 2213 (2012). [11] Z. Chen, S. Berciaud, C. Nuckolls, T. F. Heinz, and L. E. Brus, ACS Nano 4, 2964 (2010). [12] H. Dong, W. Gao, F. Yan, H. Ji, and H. Ju, Anal. Chem. 82, 5511 (2010). [13] P. Wang, T. Jiang, C. Zhu, Y. Zhai, D. Wang, and S. Dong, Nano Res. 3, 794 (2010). [14] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, Nat. Nanotech. 7, 363 (2012). [15] Q. Bao and K. P. Loh, ACS Nano 3677 (2012). [16] A. N. Grigorenko, M. Polini, and K. S. Novoselov, Nat. Photon. 6, 749 (2012). [17] F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, Nano Lett. 11, 3370-3377 (2011). [18] A. Manjavacas, P. Norlander, and F. J. García de Abajo, ACS Nano 6, 1724-1731 (2012). [19] A. Manjavacas, S. Thongrattanasiri, D. E. Chang, and F. J. García de Abajo, New. J. of Phys. 14, 123020 (2012). [20] J. D. Cox, M. R. Singh, G. Gumbs, M. A. Anton, and F. Carreño, Phys. Rev. B 86, 125452 (2012). [21] M. Feng, R. Sun, H. Zhan, and Y. Chen, Nanotechnology 21, 075601 (2010). [22] Y. H. Lee, L. Polavarapu, N. Gao, P. Yuan, and Q.-H. Xu, Langmuir 28, 321-326 (2012). [23] D. Sarid and W. A. Challener, Modern introduction to surface plasmons: theory, Mathematica modeling, and applications (Cambridge; New York: Cambridge University Press, 2010). [24] B. E. Kane, Phys. Rev. B 82, 115441 (2010). [25] P. Hanarp, M. Käll, and D. S. Sutherland, J. Phys. Chem. B 107, 5768 (2003). [26] F.Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, Science 320, 206 (2008). [27] Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, Nat. Phys. 4, 532 (2008). [28] P. Meystre and M. Sargent III, Elements of quantum optics, fourth edition (Springer-Verlag, Berlin Heidelberg, 9 2007). [29] D. A. Holm and M. Sargent III, Opt. Lett. 10, 405-407 (1985). [30] M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge: Cambridge University Press, 1997). [31] R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, New York, 2008). [32] T. Brunhes, P. Boucaud, S. Sauvage, F. Glotin, R. Prazeres, J.-M. Ortega, A. Lemaître, and J.-M. Gérard, Appl. Phys. Lett. 75, 835 (1999).0953-898410.1088/0953-8984/25/38/385302https://hdl.handle.net/20.500.14352/34657Nonlinear two-photon absorption in a quantum dot–graphene nanoflake nanocomposite system has been investigated. An external laser field is applied to the nanocomposite to simultaneously observe two-photon processes in the quantum dot and excite localized surface plasmons in the graphene nanodisk. This resonance condition can be achieved by tuning the plasmon resonance frequency in the graphene nanoflake via electrostatic gating. It is found that the strong local field of the graphene plasmons can enhance and control nonlinear optical processes in the quantum dot. Specifically, we show that the two-photon absorption coefficient in the quantum dot can be switched between single- and double-peaked spectra by modifying the graphene–quantum dot separation. Two-photon processes in the quantum dot can also be switched on or off by slightly changing the gate voltage applied to the graphene. Our findings indicate that this system can be used for nonlinear optical applications such as all-optical switching, biosensing and signal processing.engPlasmonic control of nonlinear two-photon absorption in graphene nanocompositesjournal articlehttp://dx.doi.org/10.1088/0953-8984/25/38/385302http://iopscience.iop.org/0953-8984/25/38/385302/open access535535.14535.374533.951External laser fieldsGraphene nanocompositesLocalized surface plasmonNanocomposite systemsNonlinear optical applicationsNonlinear optical processPlasmon resonance frequenciesTwo-photon absorptionsNonlinear DynamicsQuantum DotsStatic ElectricityElectromagnetismoFísica de materialesÓptica (Física)2202 Electromagnetismo2209.19 Óptica Física