Semenov, E.M.Tradacete, P.Hernández, Francisco L.2023-06-182023-06-1820161064-562410.1134/S1064562416040281https://hdl.handle.net/20.500.14352/24675Let E and F be Banach spaces. A linear operator from E to F is said to be strictly singular if, for any subspace Q aS, E, the restriction of A to Q is not an isomorphism. A compactness criterion for any strictly singular operator from L (p) to L (q) is found. There exists a strictly singular but not superstrictly singular operator on L (p) , provided that p not equal 2.engStrictly singular operators in pairs of L (p) spacejournal articlehttp://link.springer.com/article/10.1134/S1064562416040281http://link.springer.com/restricted access517Banach-latticesCompactAnálisis matemático1202 Análisis y Análisis Funcional