Melle Hernández, AlejandroGusein-Zade, Sabir MedgidovichLuengo Velasco, Ignacio2023-06-202023-06-2020080065-9290https://hdl.handle.net/20.500.14352/49731We offer an equivariant version of the classical monodromy zeta function of a singularity as a series with coefficients from the Grothendieck ring of finite G-sets tensored by the field of rational numbers. Main two ingredients of the definition are equivariant Lefschetz numbers and the λ-structure on the Grothendieck ring of finite G-sets. We give an A’Campo type formula for the equivariant zeta function.engAn equivariant version of the monodromy zeta functionjournal articlehttp://www.ams.org/bookstore/trans2seriesopen access512.7Monodromy zeta functionEquivariant Lefschetz numberGrothendieck ringGeometria algebraica1201.01 Geometría Algebraica