Gomez, I.Domínguez-Adame Acosta, FranciscoDíez, E.Bellani, V.2023-06-202023-06-201999-04-011. L. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970). 2. R. Tsu and L. Esaki, Appl. Phys. Lett. 22, 562 (1973). 3. H.-H. Tung and C.-P. Lee, IEEE J. Quantum Electron. 32, 507 (1996). 4. K. A. Mäder and A. Zunger, Europhys. Lett. 31, 107 (1995). 5. J. H. Luscombe, Nanotechnology 4, 1 (1993). 6. F. Domínguez-Adame, A. Sánchez, and E. Diez, Phys. Rev. 50, 17736 (1994). 7. C. B. Duke, Tunneling in Solids (Academic, New York, 1969). 8. T. B. Boykin, Phys. Rev. B 51, 4289 (1995). 9. F. Domínguez-Adame, B. Méndez, and E. Maciá, Semicond. Sci. Technol. 9, 263 (1994). 10. C. Rauch, G. Strasser, K. Unterrainer, W. Boxleitner, and G. Gornik, Phys. Rev. Lett. 81, 3495 (1998).0021-897910.1063/1.369764https://hdl.handle.net/20.500.14352/59361© 1999 American Institute of Physics. Work at Madrid has been supported by CAM (Spain) under Project No. 07N/0034/1998.We study the electron transmission probability in semiconductor superlattices where the height of the barriers is modulated by a Gaussian profile. Such structures act as efficient energy band-pass filters and, contrary to previous designs, it is expected to present a lower number of unintentional defects and, consequently, better performance. The j-V characteristic presents negative differential resistance with peak-to-valley ratios much greater than in conventional semiconductor superlattices.engElectron transport across a Gaussian superlatticejournal articlehttp://dx.doi.org/10.1063/1.369764http://scitation.aip.org/open access538.9PhysicsAppliedFísica de materiales