Gómez Nicola, ÁngelRivers, R. JSteer, D. A.2023-06-202023-06-202000-02-20[1] S. Coleman, Phys. Rev. D 11 (1975) 2088. [2] D. Delépine, R. González Felipe, J. Weyers, Phys. Lett. B 419 (1998) 296. [3] A. Gómez Nicola, D.A. Steer, Nucl. Phys. B 549 (1999) 409. [4] T.H.R. Skyrme, Proc. R. Soc. London A 260 (1961) 127. [5] R.F. Álvarez-Estrada, A. Gómez Nicola, Phys. Rev. D 57 (1998) 3618. [6] R.F. Álvarez-Estrada, A. Gómez Nicola, Phys. Lett. B 355 (1995) 288. [7] R.F. Álvarez-Estrada, A. Gómez Nicola, Phys. Lett. B 380 (1996) 491, (E). [8] For a review, see Proc. of QCD at Finite Baryon Density, Bielefeld (Germany) , in: Nucl. Phys. A 642 (1998). [9] D.J. Amit, Y.Y. Goldschmidt, G. Grinstein, J. Phys. A 13 (1980) 585. [10] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford, 1990). [11] S. Coleman, Comm. Math. Phys. 31 1(973) 259. [12] For a review, see A. Dobado, A. Gómez Nicola, A. López-Maroto, J.R. Peláez, Effective Lagrangians for the Standard Model (Springer, Berlin, 1997) , and references therein. [13] T.S. Evans, A. Gomez Nicola, R.J. Rivers, D.A. Steer, in preparation. [14] R. Monaco, Int. J. Infrared Millimeter Waves 11 (1990) 533. [15] S. Samuel, Phys. Rev. D 18 (1978) 1916. [16] S. Jaimungal, A.R. Zhitnitsky, hep- ph/9905540. [17] A. Lenard, J. Math. Phys. 2 (1961) 682. [18] S.F. Edwards, A. Lenard, J. Math. Phys. 3 (1962) 778. [19] P. Ginsparg, Nucl. Phys. B 170 (1980) 388. [20] T. Appelquist, R.D. Pisarski, Phys. Rev. D 23 (1981) 2305. [21] K. Kajantie, M. Laine, K. Rummukainen, M. Shaposnikov, Nucl. Phys. B 458 (1996) 90. [22] J.I. Kapusta, Finite-Temperature Field Theory (Cambridge Univ. Press, Cambridge, 1989). [23] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970). [24] A. Rebhan, Proc. of the 5th Workshop on Thermal Field Theories and their applications, Regensburg, Germany, hep-phr9808480. [25] M. Stephanov, Proc. of QCD at Finite Baryon Density, Bielefeld (Germany) , Nucl. Phys. A 642 (1998) 90c. [26] W. Fischler, J. Kogut, L. Susskind, Phys. Rev. D 19 (1979) 1188.0550-321310.1016/S0550-3213(99)00779-8https://hdl.handle.net/20.500.14352/59582© 2000 Elsevier Science B.V.. We would like to thank Tim Evans for numerous helpful discussions and suggestions. A.G.N has received support through CICYT, Spain, project AEN97-1693. D.A.S. is supported by P.P.A.R.C. of the UK through a research fellowship and is a member of Girton College, Cambridge. This work was supported in part by the E.S.F.We show that in certain limits the (1+1)-dimensional massive Thirring model at finite temperature T is equivalent to a one-dimensional Coulomb gas of charged particles at the same T. This equivalence is then used to explore the phase structure of the massive Thirring model. For strong coupling and T >>m (the fermion mass) , the system is shown to behave as a free gas of ‘‘molecules’’ (charge pairs in the Coulomb gas terminology) made of pairs of chiral condensates. This binding of chiral condensates is responsible for the restoration of chiral symmetry as T→∞. In addition, when a fermion chemical potential μ ≠ 0 is included, the analogy with a Coulomb gas still holds with μ playing the rôle of a purely imaginary external electric field. For small T and μ we find a typical massive Fermi gas behaviour for the fermion density, whereas for large μ it shows chiral restoration by means of a vanishing effective fermion mass. Some similarities with the chiral properties of low-energy QCD at finite T and baryon chemical potential are discussedengChiral symmetry restoration in the massive Thirring model at finite T and mu: dimensional reduction and the Coulomb gasjournal articlehttp://dx.doi.org/10.1016/S0550-3213(99)00779-8http://www.sciencedirect.comopen access51-73Sine-gordonTemperatureFísica-Modelos matemáticosFísica matemática