Martínez Matos, ÓscarVaveliuk, PabloTorchia, Gustavo Adrián2023-06-192023-06-1920131559-898510.2528/PIER13050606https://hdl.handle.net/20.500.14352/33516© Copyright 2014 EMW Publishing. Financial support from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil, under project 477260/2010-1, and Spanish Ministry of Science and Innovation, under project TEC 2011-23629, is acknowledged. P. V. acknowledges a PQ fellowship of CNPq.It is shown how the linear Gouy phase of an ideal nondiffracting beam of +/-(k - k_z)z form, with k_z being the projection of the wavevector of modulus k of the plane wave spectrum onto the propagation axis z, is built from a rigorous treatment based on the successive approximations to the Helmholtz equation. All of different families of nondiffracting beams with a continuum spectrum, as Bessel beams, Mathieu beams and Parabolic ones, as well as nondiffracting beams with a discrete spectrum, as kaleidoscopic beams, have an identical Gouy phase that fully governs the beam propagation dynamics. Hence, a real beam whose Gouy phase is close to that linear Gouy phase in a given range, will have nondiffracting-like properties on such a range. These results are applied to determine the effective regime in which a physically realizable beam can be treated as a nondiffracting one. As a fruitful example, the Gouy phase analysis is applied to fully establish the regime in which a Helmholtz-Gauss beam propagates with nondiffracting-like properties.engFeatures of the gouy phase of nondiffracting beamsjournal articlehttp://jpier.org/PIER/pier.php?paper=13050606http://jpier.orgopen access535Bessel BeamsOptical-FieldsMathieu BeamsDiffractionInvarianceShiftLightÓptica (Física)2209.19 Óptica Física