Llanes Estrada, Felipe JoséCotanch, Stephen R2023-06-202023-06-202001-04-05[1] G.S. Adams et al., E852 Collaboration, Phys. Rev. Lett. 81 (1998) 5760; D.R. Thompson et al., E852 Collaboration, Phys. Rev. Lett. 79 (1997) 1630. [2] T. Barnes, F.E. Close, F. de Viron, J.Weyers, Nucl. Phys. B 224 (1983) 241. [3] P. Lacock, C. Michael, P. Boyle, P. Rowland, Phys. Rev. D 54 (1996) 6997. [4] C. McNeile, INFN Workshop on Hadron Spectroscopy, Frascati Physics Series 15 (1999) 13, hep lat/9904013. [5] T.Manke, I.T. Drummond, R.R. Horgan, H.P. Shanahan, Phys. Rev. D 57 (1998) R3829. [6] K.J. Juge, J. Kuti, C.J. Morningstar, Nucl. Phys. Proc. Suppl. 83 (2000) 304. [7] N. Isgur, J. Paton, Phys. Rev. D 31 (1985) 2910. [8] T. Barnes, F.E. Close, E.S. Swanson, Phys. Rev. D 52 (1995) 5242; E.S. Swanson, Nucl. Phys. Proc. Suppl. 86 (2000) 393; L. Burakovsky, P.R. Page, hep-ph/0007199. [9] K. Chetyrkin, S. Narison, Phys. Lett. B 485 (2000) 145. [10] N. Brambilla, Nucl. Phys. Proc. Suppl. 86 (2000) 389. [11] A. Le Yaouanc et al., Z. Phys. C 28 (1985) 309. [12] F.J. Llanes-Estrada, S.R. Cotanch, Phys. Rev. Lett. 84 (2000) 1102. [13] F.J. Llanes-Estrada, S.R. Cotanch, hep-ph/0101078. [14] A.P. Szczepaniak, E.S. Swanson, C.-R. Ji, S.R. Cotanch, Phys. Rev. Lett. 76 (1996) 2011. [15] N.H. Christ, T.D. Lee, Phys. Rev. D 22 (1980) 939. [16] F.J. Llanes-Estrada, S.R. Cotanch, P.J. Bicudo, J.E.F.T. Ribeiro, A.P. Szczepaniak, hep-ph/0008212. [17] S.M. Gerasyura, V.I. Kochin, Phys. Rev. D 62 (2000) 014008. [18] E.S. Swanson, A.P. Szczepaniak, Phys. Rev. D 59 (1999) 014035. [19] C. Morningstar, private communication. [20] Eur. Phys. J. C 15 (2000) 1–878.0370-269310.1016/S0370-2693(01)00290-8https://hdl.handle.net/20.500.14352/58834© 2001 Published by Elsevier Science B.V. We thank NERSC for providing Cray J-90 CPU time. F.L.E. acknowledges SURA-Jefferson Lab for a graduate fellowship. This work was partially supported by grantsDOE DE-FG02 97ER41048 and NSF INT-9807009Utilizing an effective QCD Coulomb gauge Hamiltonian with linear confinement specified by lattice, we report a relativistic many-body calculation for the light exotic and charmed hybrid mesons. The Hamiltonian successfully describes both quark and gluon sectors, with vacuum and quasiparticle properties generated by a BCS transformation and more elaborate TDA and RPA diagonalizations for the meson (q¯q ) and glueball (gg) masses. Hybrids entail a computationally intense relativistic three quasiparticle (q ¯ qg) calculation with the 9-dimensional Hamiltonian matrix elements evaluated variationally by Monte Carlo techniques. Our new TDA (RPA) spectrum for the nonexotic 1−− charmed (c ¯ c and c ¯cg) system provides an explanation for the overpopulation of the observed J/ψ states. For the important 1−+ light exotic channel we obtain hybrid masses above 2 GeV, in broad agreement with lattice and flux tube models, indicating that the recently observed resonances at 1.4 and 1.6 GeV are of different, perhaps four quark, structure.engMany-body Coulomb gauge exotic and charmed hybridsjournal articlehttp://dx.doi.org/10.1016/S0370-2693(01)00290-8http://arxiv.org/abs/hep-ph/0008337http://www.sciencedirect.comopen access53Flux-Tube ModelHeavy HybridsConstituent Gluons18 Gev/CMesonsQcdHadronsFísica (Física)22 Física