Llanes Estrada, Felipe JoséAlkofer, ReinhardFischer, Christian S2023-06-202023-06-202008-05-201. G. S. Bali and K. Schilling, Phys. Rev. D 46, 2636 (1992). 2. S. Weinberg, Phys. Rev. Lett. 31, 494 (1973). 3. D. J. Gross and F. Wilczek, Phys. Rev. D 8, 3633 (1973). 4. L. von Smekal, R. Alkofer and A. Hauck, Phys. Rev. Lett. 79, 3591 (1997). 5. C. Lerche and L. von Smekal, Phys. Rev. D 65, 125006 (2002). 6. J. M. Pawlowski, D. F. Litim, S. Nedelko and L. von Smekal, Phys. Rev. Lett. 93, 152002 (2004). 7. R. Alkofer, C. S. Fischer and F. J. Llanes-Estrada, Phys. Lett. B 611, 279 (2005). 8. F. Karsch and E. Laermann, hep-lat/0305025. 9. C. D. Roberts and A. G. Williams, Prog. Part. Nucl. Phys. 33, 477 (1994). 10. R. Alkofer and L. von Smekal, Phys. Rep. 353, 281 (2001). 11. C. S. Fischer, J. Phys. G: Nucl. Part. Phys. 32, R253 (2006). 12. A. Cucchieri, T. Mendes and A. R. Taurines, Phys. Rev. D 67, 091502 (2003). 13. D. Zwanziger, Phys. Rev. D 69, 016002 (2004). 14. P. Watson and R. Alkofer, Phys. Rev. Lett. 86, 5239 (2001). 15. T. Kugo, hep-th/9511033. 16. J. C. Taylor, Nucl. Phys. B 33, 436 (1971). 17. A. Cucchieri, T. Mendes and A. Mihara, JHEP 12, 012 (2004). 18. W. Schleifenbaum, A. Maas, J. Wambach and R. Alkofer, Phys. Rev. D 72, 014017 (2005). 19. D. Zwanziger, Phys. Rev. D 65, 094039 (2002). 20. R. Alkofer, W. Detmold, C. S. Fischer and P. Maris, Phys. Rev. D 70, 014014 (2004). 21. W. J. Marciano and H. Pagels, Phys. Rep. 36, 137 (1978). 22. J. S. Ball and T.-W. Chiu, Phys. Rev. D 22, 2542 (1980). 23. C. S. Fischer and R. Alkofer, Phys. Rev. 67, 094020 (2003). 24. R. Alkofer, C. S. Fischer, F. J. Llanes-Estrada and K. Schwenzer, arXiv: 0804.3042 [hep-ph]. 25. D. Gromes, Z. Phys. C 11, 147 (1981).0217-732310.1142/S021773230802700Xhttps://hdl.handle.net/20.500.14352/50791© World Scientic Publishing Company. This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) under contracts Al 279/5-1 and Fi 970/7-1 and the Spanish grant FPA 2004-02602.We employ a functional approach to investigate the confinement problem in quenched Landau gauge QCD. We demonstrate analytically that a linear rising potential between massive quarks is generated by infrared singularities in the dressed quark-gluon vertex. The self consistent mechanism that generates these singularities is driven by the scalar Dirac amplitudes of the full vertex and the quark propagator. These can only be present when chiral symmetry is broken. We have thus uncovered a novel mechanism that directly links chiral symmetry breaking with confinement.engDynamically induced scalar quark confinementjournal articlehttp://dx.doi.org/10.1142/S021773230802700Xhttp://arxiv.org/abs/hep-ph/0607293http://www.worldscientific.comopen access53Dyson-Schwinger EquationsYang-Mills TheoryGauge-TheoriesInfrared BehaviorQcdLimitFísica (Física)22 Física