Baro González, ElíasBerarducci, AlessandroOtero, Margarita2023-06-172023-06-172019-10-011469-775010.1112/jlms.12216https://hdl.handle.net/20.500.14352/13777Let G be a group definable in an o-minimal structure M. We prove that the union of the Cartan subgroups of G is a dense subset of G. When M is an expansion of a real closed field we give a characterization of Cartan subgroups of G via their Lie algebras which allow us to prove firstly, that every Cartan subalgebra of the Lie algebra of G is the Lie algebra of a definable subgroup – a Cartan subgroup of G –, and secondly, that the set of regular points of G – a dense subset of G – is formed by points which belong to a unique Cartan subgroup of G.engCartan subgroups and regular points of o‐minimal groupsjournal articlehttps://londmathsoc.onlinelibrary.wiley.com/doi/full/10.1112/jlms.12216open access510.6164Lógica simbólica y matemáticaTeoría de gruposMathematical logic and foundationsGroup theoryMatemáticas (Matemáticas)Grupos (Matemáticas)Lógica simbólica y matemática (Matemáticas)12 Matemáticas1102.14 Lógica Simbólica