Díaz Díaz, Jesús IldefonsoAntontsev, S.N.2023-06-202023-06-2020100219-199710.1142/S0219199710003725https://hdl.handle.net/20.500.14352/42150We consider a general class of one-dimensional parabolic systems, mainly coupled in the diffusion term, which, in fact, can be of the degenerate type. We derive some new L(1)-gradient type estimates for its solutions which are uniform in the sense that they do not depend on the coefficients nor on the size of the spatial domain. We also give some applications of such estimates to gas dynamics, filtration problems, a p-Laplacian parabolic type equation and some first order systems of Hamilton-Jacobi or conservation laws type.engNew l(1)-gradient type estimates of solutions to one-dimensional quasilinear parabolic systemsjournal articlehttp://www.worldscinet.com/ccm/ccm.shtmlhttp://www.worldscinet.com/restricted access517.91514.752.432laminar hot gasrenormalized solutionselliptic-equationscolder atmospheredischargeexistencespaceL(1)-gradient estimatesquasilinear parabolic systemsfirst order hyperbolic systemsGeometría diferencialEcuaciones diferenciales1204.04 Geometría Diferencial1202.07 Ecuaciones en Diferencias