Díaz Díaz, Jesús IldefonsoBelaud, Yves2023-06-202023-06-202010-04-030944-6532https://hdl.handle.net/20.500.14352/42152We start by studying the finite extinction time for solutions of the abstract Cauchy problem u(t) + Au + Bu = 0 where A is a maximal monotone operator and B is a positive operator on a Hilbert space H. We use a suitable spectral energy method to get some sufficient conditions which guarantee this property. As application we consider a singular semilinear parabolic equation: Au = -Delta u, Bu = a(x)u(q), a(x) >= 0 bounded and -1 < q < 1, on a regular bounded domain Omega and Dirichlet boundary conditions.engAbstract results on the finite extinction time property: application to a singular parabolic equationjournal articlehttp://www.heldermann.de/JCA/JCA17/JCA173/jca17054.htmhttp://www.heldermann.de/restricted access517.954Finite extinction timeabstract Cauchy problemssingular semilinear parabolic equationssemi-classical analysis. free-boundary solutionsarbitrary orderquasilinear equationsvanishing propertieselliptic problemsenergy solutionsdimensionevolutionsupportsFísica matemáticaEcuaciones diferenciales1202.07 Ecuaciones en Diferencias