Fraile Prieto, Luis Mario2023-06-172023-06-172016-09-06[1] M. Geoppert Mayer, Phys. Rev. 75, 1969 (1949); O. Haxel, ibid. 75, 1766 (1949). [2] C. Thibault et al., Phys. Rev. C 12, 644 (1975). [3] N. A. Orr et al., Phys. Lett. B 258, 84 (1991); X. G. Zhou et al., Phys. Lett. 260B, 285 (1991). [4] T. Motobayashi et al., Phys. Lett. B 346, 9 (1995). [5] B. V. Pritychenko et al., Phys. Rev. C 63, 011305(R) (2000). [6] S. Nummela et al., Phys. Rev. C 64, 054313 (2001). [7] Y. Yanagisawa et al., Phys. Lett. B 566, 84 (2003). [8] Z. Elekes et al., Phys. Rev. C 73, 044314 (2006). [9] V. Tripathi et al., Phys. Rev. Lett. 101, 142504 (2008). [10] D. T. Yordanov et al., Phys. Rev. Lett. 99, 212501 (2007). [11] R. Kanungo et al., Phys. Lett. B 685, 253 (2010). [12] G. Neyens, Phys. Rev. C 84, 064310 (2011). [13] E. K. Warburton, J. A. Becker, and B. A. Brown, Phys. Rev. C 41, 1147 (1990). [14] A. De. Shalit et al., Phys. Rev. 92, 1211 (1953). [15] T. Otsuka, T. Suzuki, M. Honma, Y. Utsuno, N. Tsunoda, K. Tsukiyama, and M. Hjorth-Jensen, Phys. Rev. Lett. 104, 012501 (2010). [16] H. T. Fortune, Phys. Rev. C 85, 014315 (2012). [17] H. Geissel et al., Nucl. Instrum. Methods Phys. Res., Sect. B 70, 286 (1992). [18] T. Blaich et al., Nucl. Instrum. Methods Phys. Res., Sect. A 314, 136 (1992). [19] C. Caeser et al., Phys. Rev. C 88, 034313 (2013). [20] A. Rahaman et al., EPJ Web Conf. 66, 02087 (2014). [21] S. Chakraborty et al., EPJ Web Conf. 66, 02019 (2014). [22] U. Datta Pramanik et al., Phys. Lett. B 551, 63 (2003). [23] R. Palit et al., Phys. Rev. C 68, 034318 (2003). [24] C. Nociforo et al., Phys. Lett. B 605, 79 (2005). [25] U. Datta Pramanik, Prog. Part. Nucl. Phys. 59, 183 (2007). [26] C. J. Benesh, B. C. Cook, and J. P. Vary, Phys. Rev. C 40, 1198 (1989). [27] T. Aumann and T. Nakamura, Phys. Scr., T 152, 014012 (2013). [28] C. A. Bertulani and G. Baur, Phys. Rep. 163, 299 (1988). [29] K. Boretzky et al., Phys. Rev. C 68, 024317 (2003). [30] R. Anholt et al., Phys. Rev. A 33, 2270 (1986). [31] http://www.nndc.bnl.gov [32] V. Maddalena et al., Phys. Rev. C 63, 024613 (2001). [33] P. Himpe et al., Phys. Lett. B 658, 203 (2008). [34] Y. Utsuno, T. Otsuka, T. Mizusaki, and M. Honma, Phys. Rev. C 64, 011301(R) (2001). [35] I. Hamamoto, Phys. Rev. C 69, 041306(R) (2004). [36] G. Ripka and L. Zamick, Phys. Lett. 23, 347 (1966). [37] D. T. Yordanov, K. Blaum, M. De Rydt, M. Kowalska, R. Neugart, G. Neyens, and I. Hamamoto, Phys. Rev. Lett. 104, 129201 (2010). [38] T. Misu, W. Nazarewicz, and A. Aberg, Nucl. Phys. A 614, 44 (1997). [39] F. M. Nunes, Nucl. Phys. A 757, 349 (2005).2469-998510.1103/PhysRevC.94.034304https://hdl.handle.net/20.500.14352/18992©2016 American Physical Society. Articulo firmado por más de 10 autores. The authors wish to thank the accelerator staff of GSI for their active support during the experiment. Ushasi Datta acknowledges the Alexander von Humboldt Foundation and SEND project (PIN: 11-R&D-SIN-5.11-0400), Govt. of India, for their support of the experimental investigation and is also grateful to Prof. B. M. Sherrill, NSCL, and Prof. Larry Zamick, Rutgers University, for many valuable suggestions and discussion.The first direct experimental evidence of a multiparticle-hole ground state configuration of the neutron-rich Mg-33 isotope has been obtained via intermediate energy (400 A MeV) Coulomb dissociation measurement. The major part similar to(70 +/- 13)% of the cross section is observed to populate the excited states of Mg-32 after the Coulomb breakup of Mg-33. The shapes of the differential Coulomb dissociation cross sections in coincidence with different core excited states favor that the valence neutron occupies both the s(1/2) and p(3/2) orbitals. These experimental findings suggest a significant reduction and merging of sd-pf shell gaps at N similar to 20 and 28. The ground state configuration of Mg-33 is predominantly a combination of Mg-32(3.0,3.5MeV; 2(-), 1(-)) circle times nu(s1/2), Mg-32(2.5MeV; 2(+)) circle times nu(p3/2), and Mg-32(0; 0(+)) circle times nu(p3/2). The experimentally obtained quantitative spectroscopic information for the valence neutron occupation of the s and p orbitals, coupled with different core states, is in agreement with Monte Carlo shell model (MCSM) calculation using 3 MeV as the shell gap at N = 20.engDirect experimental evidence for a multiparticle-hole ground state configuration of deformed Mg-33journal articlehttp://dx.doi.org/10.1103/PhysRevC.94.034304http://journals.aps.org/open access539.1Relativistic heavy ionsNeutron rich isotopesCoulomb breakupCollisionsDeformationInversionNucleiIslandHalosN=20Física nuclear2207 Física Atómica y Nuclear