Cobos Díaz, FernandoRichter, ChristianUllrich, Tino2023-06-202023-06-2020090022-247X10.1016/j.jmaa.2008.11.044https://hdl.handle.net/20.500.14352/49852We study spaces generated by applying the interpolation methods defined by a polygon Π to an N-tuple of real interpolation spaces with respect to a fixed Banach couple {X, Y }. We show that if the interior point (α,β) of the polygon does not lie in any diagonal of Π then the interpolation spaces coincide with sums and intersections of real interpolation spaces generated by {X, Y }. Applications are given to N-tuples formed by Lorentz function spaces and Besov spaces. Moreover, we show that results fail in general if (α,β) is in a diagonal.engReiteration formulae for interpolation methods associated to polygonsjournal articlehttps//doi.org/10.1016/j.jmaa.2008.11.044http://www.sciencedirect.com/science/article/pii/S0022247X08011165restricted access517.982.22Banach-SpacesCompact-OperatorsDualityInterpolation methods associated to polygonsReiterationLorentz function spacesBesov spacesMathematicsAppliedTopología1210 Topología