Carmona Jiménez, J. L.Castrillón López, Marco2023-06-172023-06-172021https://hdl.handle.net/20.500.14352/7226We describe the holonomy algebras of all canonical connections and their action on complex hyperbolic spaces CH(n) in all dimensions (n ∈ N). This thorough investigation yields a formula for all Kähler homogeneous structures on complex hyperbolic spaces. Finally, we have related the belonging of the homogeneous structures to the different Tricerri and Vanhecke’s (or Abbena and Garbiero’s) orthogonal and irreducible U(n)-submodules with concrete and determined expressions of the holonomy.engThe homogeneous geometries of complex hyperbolic spacejournal articleopen access514.7Canonical connectionComplex hyperbolic spaceHomogeneous structuresHolonomyGeometría diferencial1204.04 Geometría Diferencial