Cebrián, ElenaBonilla, Luis L.Carpio Rodríguez, Ana María2023-06-202023-06-202009Cebrián, E., Bonilla, L. L. y Carpio Rodríguez, A. M. «Self-Sustained Current Oscillations in the Kinetic Theory of Semiconductor Superlattices». Journal of Computational Physics, vol. 228, n.o 20, noviembre de 2009, pp. 7689-705. DOI.org (Crossref), https://doi.org/10.1016/j.jcp.2009.07.008.0021-999110.1016/j.jcp.2009.07.008https://hdl.handle.net/20.500.14352/49849We present the first numerical solutions of a kinetic theory description of self-sustained current oscillations in n-doped semiconductor superlattices. The governing equation is a single-miniband Boltzmann-Poisson transport equation with a BGK (Bhatnagar-Gross-Krook) collision term. Appropriate boundary conditions for the distribution function describe electron injection in the contact regions. These conditions seamlessly become Ohm's law at the injecting contact and the zero charge boundary condition at the receiving contact when integrated over the wave vector. The time-dependent model is numerically solved for the distribution function by using the deterministic Weighted Particle Method. Numerical simulations are used to ascertain the convergence of the method. The numerical results confirm the validity of the Chapman-Enskog perturbation method used previously to derive generalized drift-diffusion equations for high electric fields because they agree very well with numerical solutions thereof.engSelf-sustained current oscillations in the kinetic theory of semiconductor superlatticesjournal articlehttps://doi.org/10.1016/j.jcp.2009.07.008http://www.sciencedirect.com/science/article/pii/S002199910900388Xhttp://arxiv.org/pdf/0907.3807.pdfrestricted access539.2532Semiconductor superlatticeBoltzmann–BGK–Poisson kinetic equationContact boundary conditionsSelf-sustained current oscillationsParticle methodsFísica del estado sólidoHidrodinámica2211 Física del Estado Sólido3301.12 Hidrodinámica