Soria de Diego, Francisco JavierTradacete, Pedro2024-01-172024-01-172019Soria, J., Tradacete, P. Geometric properties of infinite graphs and the Hardy–Littlewood maximal operator. JAMA 137, 913–937 (2019). https://doi.org/10.1007/s11854-019-0019-52737-069010.1007/s11854-019-0019-5https://hdl.handle.net/20.500.14352/93673We study different geometric properties on infinite graphs, related to the weak-type boundedness of the Hardy–Littlewood maximal averaging operator. In particular, we analyze the connections between the doubling condition, having finite dilation and overlapping indices, uniformly bounded degree, the equidistant comparison property and the weak-type boundedness of the centered Hardy–Littlewood maximal operator. Several non-trivial examples of infinite graphs are given to illustrate the differences among these properties.engGeometric properties of infinite graphs and the Hardy-Littlewood maximal operatorjournal articlehttps://doi.org/10.1007/s11854-019-0019-5https://link.springer.com/article/10.1007/s11854-019-0019-5open accessCiencias12 Matemáticas