Muñoz-Fernández, Gustavo A.Sánchez, V.M.Seoane Sepúlveda, Juan Benigno2023-06-202023-06-202011-011331-4343https://hdl.handle.net/20.500.14352/42363Let parallel to . parallel to(infinity) denote the sup norm on [-1,1]. If x is an element of [-1,1] is fixed and M-m,M-n(x) is the best constant in vertical bar p'(x)vertical bar <= M-m,M-n(x)parallel to p parallel to(infinity), for all trinomials p of the form p(x) = ax(m) + bx(n) + c with a, b, c is an element of R, then the exact value of M-m,M-n(x) is known for large families of pairs (m,n) is an element of N-2. Here we consider the same problem for L-p-norms.engL-P-Analogues of Bernstein and Markov Inequalitiesjournal articlehttp://mia.ele-math.com/restricted access517.518.28Bernstein and Markov type inequalitytrinomialFunciones (Matemáticas)1202 Análisis y Análisis Funcional