Sánchez-Alonso, José LuisSánchez-Aguilera López, AlbertoVicente Torres, María ÁngelesColino Matilla, María Asunción2024-01-242024-01-242016-120306-452210.1016/j.neuroscience.2016.12.024https://hdl.handle.net/20.500.14352/95148The firing pattern of individual neurons is an important element for information processing and storing. During the first weeks of development, there is a transitional period during which CA1 pyramidal neurons display burst-spiking behavior in contrast to the adult regular-firing pattern. Spike after-depolarizations (ADPs) constitute a major factor underlying burst-spiking behavior. Using current-clamp recordings, we studied ADP waveforms and firing patterns in CA1 pyramidal neurons of Wistar rats from 9 to 19 postnatal days (P9-19). The percentage of burst-spiking neurons increased up to P16, in correlation with the emergence of an active component in the ADP. The application of low-voltage-activated (LVA) calcium channel blockers such as nickel or mibefradil suppressed the generation of the active ADP component and burst-spiking behavior. In agreement with the development of the ADP waveform and burst-spiking behavior, voltage-clamp experiments in dissociated pyramidal neurons showed an increase in the LVA calcium current in P16-19 vs P9-12. Finally, we found that a reduction of extracellular calcium levels decreases the percentage of burst-spiking cells due to a reduction in the active component of the ADP. We conclude that a major contribution of LVA calcium channels to ADP determines the bursting capability of CA1 pyramidal neurons during a transitional postnatal period in contrast to adulthood.engAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Role of low-voltage-activated calcium current and extracellular calcium in controlling the firing pattern of developing CA1 pyramidal neuronsjournal article1873-7544https://www.sciencedirect.com/science/article/pii/S0306452216307242?via%3Dihub28039042open access611.81Burst-spiking firing patternCA1 pyramidal neuronsDevelopmentLow-voltage-activated calcium currentSpike after-depolarizationNeurociencias (Medicina)2490 Neurociencias