Cobos Díaz, FernandoFernández-Cabrera Marín, Luz MaríaMartínez. Antón2025-05-292025-05-29202510.1007/s43036-025-00444-yhttps://hdl.handle.net/20.500.14352/1206462025 Acuerdos transformativos CRUEWe describe a procedure for extending the inner measure $\beta_{_{\mathcal{I}}}$ associated to an operator ideal $\mathcal{I}$ to a measure $\beta_{_{\mathfrak{J}}}$ for bounded bilinear operators $T$. When $\mathcal{I}$ is injective and close, we show that $\beta_{_{\mathfrak{J}}}(T)=0$ if and only if $T=RS$ for some bounded bilinear operator $S$ and $R\in\mathcal{I}$. If $\mathcal{I}$ satisfies the $\Sigma_r$-condition, then we establish a convexity inequality for the measure $\beta_{_{\mathfrak{J}}}$ of a bilinear operator interpolated by the real method.engAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/Interpolation of the inner measure of bilinear operators by the real methodjournal articlehttps://doi.org/10.1007/s43036-025-00444-yopen accessInner measure of bilinear operatorsReal interpolation of bilinear operatorsConvexity inequalitiesProjective tensor productsCiencias12 Matemáticas