Ballesteros, H. G.Cruz, A.Fernández Pérez, Luis AntonioMartín Mayor, VíctorPech, J.Ruiz Lorenzo, J. J.Tarancón, A.Téllez, P.Ullod, C. L.Ungil, C.2023-06-202023-06-202000-12-011098-012110.1103/PhysRevB.62.14237https://hdl.handle.net/20.500.14352/60066© 2000 The American Physical Society. We acknowledge discussions with E. Marinari and G. Parisi. We are grateful for the partial financial support from CICyT (AEN97-1680, AEN97-1693, AEN99-0990, and PB98-0842) and DGA (P46/97). V.M-M. was supported by a M.E.C. The computations have been carried out using the RTNN machines (Universidad de Zaragoza and Universidad Complutense de Madrid) and the dedicated machine SUE (Universidad de Zaragoza).We have simulated, using parallel tempering, the three-dimensional Ising spin glass model with binary couplings in a helicoidal geometry. The largest lattice (L520) has been studied using a dedicated computer (the SUE machine). We have obtained, measuring the correlation length in the critical region, strong evidence for a second-order finite-temperature phase transition, ruling out other possible scenarios like a KosterlitzThouless phase transition. Precise values for the ν and ƞ critical exponents are also presented.engCritical behavior of the three-dimensional Ising spin glassjournal articlehttp://doi.org/10.1103/PhysRevB.62.14237http://journals.aps.org/open access51-73Antiferromagnetic RP(2) modelMonte-Carlo simulationsMean field-theory3 dimensionsCirtical exponentsCorrelation lengthReplica symmetryTransitionsEquilibriumDynamics.Física (Física)Física-Modelos matemáticos22 Física