Bellomo, NicolaBellouquid, AbdelghaniHerrero, Miguel A.2023-06-202023-06-202007-020898-122110.1016/j.camwa.2006.02.028https://hdl.handle.net/20.500.14352/50095This paper presents an asymptotic theory for a large class of Boltzmann-type equations suitable to model the evolution of multicellular systems in biology. The mathematical approach described herein shows how various types of diffusion phenomena, linear and nonlinear, can be obtained in suitable asymptotic limits. Time scaling related to cell movement and biological activity are shown to play a crucial role in determining the macroscopic equations corresponding to each case.engFrom microscopic to macroscopic description of multicellular systems and biological growing tissuesjournal articlehttp://www.sciencedirect.com/science/article/pii/S0898122107001198http://www.sciencedirect.comrestricted access519.8751-76Kinetic theorymulticellular systemsasymptotic limitsnonlinear problemsbacterial chemotaxisasymptotic analysismathematical-modeldiffusion limitkinetic-modelsequationsaggregationdictyosteliumangiogenesisinvasionBiomatemáticasInvestigación operativa (Matemáticas)2404 Biomatemáticas1207 Investigación Operativa