Duren, PeterGallardo Gutiérrez, Eva AntoniaMontes Rodríguez, Alfonso2023-06-202023-06-2020071469-212010.1112/blms/bdm026https://hdl.handle.net/20.500.14352/50601An analogue of the Paley-Wiener theorem is developed for weighted Bergman spaces of analytic functions in the upper half-plane. The result is applied to show that the invariant subspaces of the shift operator on the standard Bergman space of the unit disk can be identified with those of a convolution Volterra operator on the space L 2 (ℝ + ,(1/t)dt).engA Paley–Wiener theorem for Bergman spaces with application to invariant subspacesjournal articlehttps//doi.org/10.1112/blms/bdm026http://blms.oxfordjournals.org/content/39/3/459.full.pdf+htmlrestricted access517MSC 2010Hilbert spaces of continuousDifferentiable or analytic functionsInvariant subspaces of linear operators30H05Bounded analytic functionsAnálisis matemático1202 Análisis y Análisis Funcional