Algaidy, SariCaudevilla Gutiérrez, DanielGodoy Pérez, GuillermoBenítez Fernández, RafaelPérez Zenteno, Francisco JoséDuarte Cano, SebastiánGarcía Hernansanz, RodrigoSan Andrés Serrano, EnriqueGarcía Hemme, EricOlea Ariza, JavierSiegel, JanGonzalo, JoséPastor Pastor, DavidPrado Millán, Álvaro Del2024-11-222024-11-222024-04-26Algaidy, S., Caudevilla, D., Godoy‐Pérez, G., Benítez‐Fernández, R., Pérez‐Zenteno, F., Duarte‐Cano, S., García‐Hernansanz, R., San Andrés, E., García‐Hemme, E., Olea, J., Siegel, J., Gonzalo, J., Pastor, D., & Del Prado, Á. (2024). Optical, electrical, and optoelectronic characterization of ti‐supersaturated gallium arsenide. Physica Status Solidi (a), 2400123. https://doi.org/10.1002/pssa.20240012310.1002/pssa.202400123https://hdl.handle.net/20.500.14352/110960Herein, a detailed investigation on the properties of supersaturated gallium arsenide (GaAs) using Ti+ implantation followed by nanosecond pulsed laser melting (PLM) is presented. The supersaturated samples are analyzed by means of electrical, optical, and optoelectronic characterization. The sheet resistance results obtained using van der Pauw configuration measurements do not show activation of the implanted Ti+ in semi-insulating GaAs after PLM. Absorptance measurements show a sub-bandgap absorption (up to 6.5% for λ = 1000 nm) of the supersaturated GaAs:Ti and the just PLM-processed GaAs, with the same laser melting fluence used (0.50 J/cm−2). The origin of this sub-bandgap absorption is analyzed. Optoelectronic measurements show a similar sub-bandgap photo-response related to the absorption analyzed. The photo-response measured below the bandgap originates from point defects introduced by the PLM process.engAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/Optical, Electrical, and Optoelectronic Characterization of Ti-Supersaturated Gallium Arsenidejournal article1862-6319https://doi.org/10.1002/pssa.202400123open access538.9Física del estado sólido2211 Física del Estado Sólido