Hilden, Hugh MichaelMontesinos Amilibia, José MaríaTejada Jiménez, Débora MaríaToro Villegas, Margarita María2023-06-202023-06-202006-12-010305-004110.1017/S0305004106009510https://hdl.handle.net/20.500.14352/50762A Fox coloured link is a pair (L,ω), where L is a link in S3 and ω a simple and transitive representation of π1(S3∖L) onto the symmetric group Σ3 on three elements. Here, a representation is called simple if it sends the meridians to transpositions. By works of the first two authors, any Fox coloured link (L,ω) gives rise to a closed orientable 3-manifold M(L,ω) equipped with a 3-fold simple covering p:M(L,ω)→S3 branched over L, and any closed orientable 3-manifold is homeomorphic to an M(K,ω) for some Fox coloured knot (K,ω) [see H. M. Hilden, Bull. Amer. Math. Soc. 80 (1974), 1243–1244; J. M. Montesinos, Bull. Amer. Math. Soc. 80 (1974), 845–846;]. In [Adv. Geom. 3 (2003), no. 2, 191–225;], I. V. Izmestʹev and M. Joswig proved that a triangulation of S3 gives rise in a natural way to some graph G on S3 and a representation of π1(S3∖G) into the symmetric group Σm for some m≤4. They also proved that any pair (L,ω), where L is a link in S3 and ω a simple (not necessarily transitive) representation of π1(S3∖L) into the symmetric group Σ4, can be obtained from a triangulation of S3. The proof that Izmestʹev and Joswig gave of this result is non-constructive. In the paper under review, the authors give a constructive proof of the same result. In particular, given a pair (L,ω) consisting of a link L in S3 and a simple (not necessarily transitive) representation of π1(S3∖L) onto the symmetric group Σ4, they construct a triangulation of S3 that gives rise to (L,ω) in a natural way.engFox coloured knots and triangulations of S3journal articlehttp://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=562432http://www.cambridge.org/restricted access515.12knotstriangulations of S3.Topología1210 Topología