Castrillón López, MarcoMuñoz Masqué, Jaime2023-06-202023-06-2019990764-444210.1016/S0764-4442(99)80009-3https://hdl.handle.net/20.500.14352/58913We prove that on the bundle of connections of an arbitrary principal bundle π: P → M there exists a canonical differential 2--form taking values in the adjoint bundle ;ing: adg:: ad P → M which defines a generalized symplectic structure and which verifies a property of “universal curvature”. The results of the present Note generalize those of [3] to an arbitrary Lie group.fraStructure symplectique généralisée sur le fibré des connexions.journal articlehttp://www.sciencedirect.com/science/article/pii/S0764444299800093http://www.sciencedirect.com/restricted access517.987.1symmetry propertiesTeoría de números1205 Teoría de Números