Mañas Baena, Manuel2023-06-202023-06-202002-051. A. Doliwa, P. M. Santini, and M. Mañas, J. Math. Phys. 41, 944 (2000). 2. H. Jonas, Berl. Math. Ges. Ber. Sitzungsber. 14, 96 (1915). 3. L. P. Eisenhart, Trans. Am. Math. Soc. 18, 111 (1917). 4. L. P. Eisenhart, Transformations of Surfaces (Princeton University Press, Princeton, NJ, 1923) [reprint (Chelsea, New York, 1962)]. 5. D. Levi and R. Benguria, Proc. Natl. Acad. Sci. U.S.A. 77, 5025 (1980). 6. J. J. C. Nimmo and W. K. Schief, Proc. R. Soc. London, Ser. A 453, 255 (1997). 7. J. Ciesliński, A. Doliwa, and P. M. Santini, Phys. Lett. A 235, 480 (1997). 8. M. A. Demoulin, C. R. Acad. Sci. Paris 150, 156 (1910). 9. L. Bianchi, Lezioni di Geometria Differenziale 3rd ed. (Zanichelli, Bologna, 1924). 10. A. Ribaucour, C. R. Acad. Sci. Paris 74, 1489 (1869). 11. A. Doliwa, M. Mañas, L. Martínez Alonso, E. Medina, and P. M. Santini, J. Phys. A 32, 1197 (1999). 12. M. Mañas and L. Martínez Alonso, Phys. Lett. B 436, 316 (1998). 13. A. Doliwa, M. Mañas, and Luis Martínez Alonso, Phys. Lett. A 262, 330 (1999). 14. M. Mañas, L. Martínez Alonso, and E. Medina, J. Phys. A 33, 2871 (2000). 15. M. Mañas, L. Martínez Alonso, and E. Medina, J. Phys. A 33, 7181 (2000). 16. G. Segal and G. Wilson, Publ. Math. I. H. E. S. 61 5 (1985). 17. E. Witten, Commun. Math. Phys. 113, 529 (1988). 18. A. Doliwa and P. M. Santini, J. Geom. Phys. 36, 60 (2000). 19. M. Mañas, A. Doliwa, and P. M. Santini, Phys. Lett. A 232, 365 (1997). 20. B. G. Konopelchenko and W. K. Schief, Proc. R. Soc. London, Ser. A 454, 3075 (1998). 21. Q. P. Liu and M. Mañas, J. Phys. A 31, L193 (1998). 22. A. Doliwa, J. Geom. Phys. 30, 169 (2000). 23. V. E. Zakharov and S. E. Manakov, Funct. Anal. Appl. 19, 89 (1985). 24. V. E. Zakharov, Duke Math. J. 94, 103 (1998); V. E. Zakharov and S. E. Manakov, Dokl. Math. 57, 471 (1998). 25. G. Darboux, Lec¸ons sur la théorie genérale des surfaces IV (Gauthier-Villars, Paris, 1896) [reprint (Chelsea, New York, 1972)]. 26. G. Lamé, Leçons sur la théorie des coordenées curvilignes et leurs diverses applications (Mallet- Bachalier, Paris 1859). 27. G. Darboux, Leçons sur les systèmes orthogonaux et les coordenées curvilignes (deuxième édition) (Gauthier-Villars, Paris, 1910) (the first edition was in 1897) [reprint [Éditions Jacques Gabay, Sceaux 1993)]. 28. D.-Th. Egorov, C. R. Acad. Sci. Paris 131, 668 (1900); 132, 174 (1901). 29. B. Dubrovin, Nucl. Phys. B 79, 627 (1992); B. Dubrovin and Y. Zhang, Commun. Math. Phys. 198, 311 (1998). 30. E. Witten, Nucl. Phys. B 340, 281 (1990). 31. E. P. Lane, Projective Differential Geometry of Curves and Surfaces (University of Chicago, Chicago, 1932). 32. R. Sauer, Differenzengeometrie (Springer- Serlag, Berlin, 1970). 33. A. Doliwa and P. M. Santini, Phys. Lett. A 233, 365 (1997). 34. R. R. Martin, in The Mathematics of Surfaces, edited by J. Gregory (Clarendon, Oxford, 1986); A. W. Nutborne, in The Mathematics of Surfaces, edited by J. Gregory (Clarendon, Oxford, 1986). 35. A. Bobenko in Symmetries and Integrability of Difference Equations II, edited by P. Clarckson and F. Nijhoff (Cambridge University Press, Cambridge, 1996); A. Bobenko and U. Pinkall, J. Diff. Geom. 43, 527 (1996); J. Reine Angew. Math. 475, 187 (1996); A. Bobenko and W. K. Schief, in Discrete Integrable Geometry and Physics, edited by A. Bobenko and R. Seiler (Oxford University Press, Oxford, 1998). 36. A. Doliwa, S. V. Manakov, and P. M. Santini, Commun. Math. Phys. 196, 1 (1998). 37. Q. P. Liu and M. Mañas, Phys. Lett. A 249, 424 (1998). 38. P. G. Grinevich and A. Yu. Orlov, Virasoro Action on Riemann Surfaces, Grassmannians, det¯δJ . and Segal-Wilson t-Function in Problems of Modern Quantum Field Theory, edited by A. A. Belavin, A. V. Klimyk, and A. B. Zamolodchikov (Springer, Berlin, 1989). 39. P. G. Grinevich and A. Yu. Orlov, Funct. Anal. Appl. 24, 61 (1990); L. V. Bogdanov and B. G. Konopelchenko, J. Math. Phys. 39, 4701 (1998).0022-248810.1063/1.1454185https://hdl.handle.net/20.500.14352/59683©2002 American Institute of Physics. This work was partially supported by Direction General de Enseñanza Superior e Investigación Científica proyecto PB98-0821Inspired by the results of Jonas, Einsenhart, Demoulin, and Bianchi on the permutability property of classical geometrical transformations of conjugate nets and its reductions-of pseudo-orthogonal, pseudo-symmetric, and pseudo-Egorov types-dressing transformations of the N-component KP hierarchy (described within the Grassmannian) are used to generate quadrilateral lattices and its corresponding reductions. As a byproduct we get the corresponding discrete dressing transformations; in particular, we characterize the vectorial fundamental discrete transformations preserving the symmetric lattice.engFrom integrable nets to integrable latticesjournal articlehttp://dx.doi.org/10.1063/1.1454185http://scitation.aip.orgopen access51-73Circular latticesLame equationsRibaucour transformationsQuadrilateral latticesCoordinate systemsDressing methodsConjugate netsGeometric netsField-theoryDiscreteFísica-Modelos matemáticosFísica matemática