Pardo San Gil, Rosa MaríaCuesta, Mabel2023-11-292023-11-292022-04-25Cuesta, M., Pardo, R.: Positive Solutions for Slightly Subcritical Elliptic Problems Via Orlicz Spaces. Milan J. Math. 90, 229-255 (2022). https://doi.org/10.1007/s00032-022-00354-110.1007/s00032-022-00354-1https://hdl.handle.net/20.500.14352/89041"Correction to: Positive solutions for Slightly subcritical elliptic problems via Orlicz Spaces" puede consultarse en: https://hdl.handle.net/20.500.14352/71664.3This paper concerns semilinear elliptic equations involving sign-changing weight function and a nonlinearity of subcritical nature understood in a generalized sense. Using an Orlicz–Sobolev space setting, we consider superlinear nonlinearities which do not have a polynomial growth, and state sufficient conditions guaranteeing the Palais–Smale condition. We study the existence of a bifurcated branch of classical positive solutions, containing a turning point, and providing multiplicity of solutions.engAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/Positive solutions for slightly subcritical elliptic problems via Orlicz Spacesjournal articlehttps//doi.org/10.1007/s00032-022-00354-1open access515.1Positive solutionsSubcritical nonlinearityChanging sign weightTopología1210 Topología