Baro, ElíasF. Fernando, JoséGamboa Mutuberria, José Manuel2023-06-172023-06-172018-03-03C. Andradas, L. Bröcker, Ludwig, J. Ruiz: Constructible sets in real geometry. Ergebnisse der Mathe-matik und ihrer Grenzgebiete (3) 33, Springer-Verlag, Berlin (1996). M.F. Atiyah, I.G. Macdonald: Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. (1969). M. Aschenbrenner, A. Thamrongthanyalak: Whitney’s extension problem in o-minimal structures. Preprint (2017). http://www.math.ucla.edu/∼matthias/pdf/Whitney.pdf R. Bkouche: Couples spectraux et faisceaux associés. Applications aux anneaux de fonctions. Bull. Soc. Math. France 98 (1970), 253–295. J. Bochnak, M. Coste, M.-F. Roy: Real algebraic geometry. Ergeb. Math. 36, Springer-Verlag, Berlin (1998). E. Baro, J.F. Fernando, J.M. Ruiz: Approximation on Nash sets with monomial singularities. Adv. Math. 262 (2014), 59–114. N. Carral, M. Coste: Normal spectral spaces and their dimensions. J. Pure Appl. Algebra 30 (1983) 227–235. G.L. Cherlin, M.A. Dickmann: Real closed rings. I. Residue rings of rings of continuous functions. Fund. Math. 126 (1986), no. 2, 147–183. G.L. Cherlin, M.A. Dickmann: Real closed rings. II. Model theory. Ann. Pure Appl. Logic 25 (1983), no.3, 213–231. M. Coste, M.F. Roy: La topologie du spectre r´eel. Ordered fields and real algebraic geometry, Contemp. Math., 8 (1982), 27–59. M. Coste, J.M. Ruiz, M. Shiota, Global problems on Nash functions. Rev. Mat. Complut. 17 (2004), no.1, 83–115. H. Delfs, M. Knebusch: Separation, Retractions and homotopy extension in semialgebraic spaces. Pacific J. Math. 114 (1984), no. 1, 47–71. H. Delfs, M. Knebusch: Locally semialgebraic spaces. Lecture Notes in Mathematics, 1173. Springer- Verlag, Berlin (1985). G. Efroymson: The extension theorem for Nash functions. Real algebraic geometry and quadratic forms (Rennes, 1981), pp. 343–357, Lecture Notes in Math., 959, Springer, Berlin-New York (1982). C. Fefferman: Whitney’s Extension Problem for Cm. Ann. of Math. 164 (2006), no. 1, 313–359. Whitney’s extension problems and interpolation of data. Bull. Amer. Math. Soc. 46 (2009), no. 2, 207– 220. fe1 [Fe1] J.F. Fernando: On chains of prime ideals in rings of semialgebraic functions. Q. J. Math. 65 (2014), no. 3, 893–930. J.F. Fernando: On the substitution theorem for rings of semialgebraic functions. J. Inst. Math. Jussieu 14 (2015), no. 4, 857–894. J.F. Fernando: On the size of the fibers of spectral maps induced by semialgebraic embeddings. Math.Nachr. 289 (2016), no. 14-15, 1760–1791. J.F. Fernando, J.M. Gamboa: On open and closed morphism between semialgebraic sets. Proc. Amer.Math. Soc. 140 (2012), no. 4, 1207–1219. J.F. Fernando, J.M. Gamboa: On the irreducible components of a semialgebraic set. Internat. J. Math.23 (2012), no. 4, 1250031 J.F. Fernando, J.M. Gamboa: On the spectra of rings of semialgebraic functions. Collect. Math. 63 (2012), no. 3, 299–331. J.F. Fernando, J.M. Gamboa: On the semialgebraic Stone–Cˇ ech compactification of a semialgebraic set. Trans. Amer. Math. Soc 364 (2012), no. 7, 3479–3511. J.F. Fernando, J.M. Gamboa: On Lojasiewicz’s inequality and the Nullstellensatz for rings of semialge- braic functions. J. Algebra 399 (2014), 475–488. J.F. Fernando, J.M. Gamboa: On the Krull dimension of rings of continuous semialgebraic functions. Rev. Mat. Iberoam. 31 (2015), no. 3, 753–756. J.F. Fernando, J.M. Gamboa: On the remainder of the semialgebraic Stone-Cech compactification of a semialgebraic set. J. Pure Appl. Algebra 222 (2018), no. 1, 1–18. J.F. Fernando, J.M. Gamboa, J.M. Ruiz: Finiteness problems on Nash manifolds and Nash sets. J. Eur. Math. Soc. (JEMS) 16 (2014) no. 3, 537–570.https://hdl.handle.net/20.500.14352/13084In this work we analyze the main properties of the Zariski and maximal spectra of a ring S^r(M) of differentiable semialgebraic functions of class C^r on a semialgebraic subset M of R^m where R denotes the field of real numbers. Denote S^0(M) the ring of semialgebraic functions on M that admit a continuous extension to an open semialgebraic neighborhood of M in Cl(M), which is the real closure of S^r(M) . Despite S^r(M) it is not real closed for r>0, the Zariski and maximal spectra are homeomorphic to the corresponding ones of the real closed ring S^0(M). Moreover, we show that the quotients of S^r(M) by its prime ideals have real closed fields of fractions, so the ring S^r(M) is close to be real closed. The equality between the spectra of S^r(M) and S^0(M) guarantee that the properties of these rings that depend on such spectra coincide. For instance the ring S^r(M) is a Gelfand ring and its Krull dimension is equal to dim(M). If M is locally compact, the ring S^r(M) enjoys a Nullstellensatz result and Lojasiewicz inequality. We also show similar results for the ring of differentiable bounded semialgebraic functions.engRings of differentiable semialgebraic functionsjournal articleopen access514512515.1ÁlgebraTopologíaGeometríaSemialgebraic compactificationReal closed ringMatemáticas (Matemáticas)ÁlgebraGeometríaTopología12 Matemáticas1201 Álgebra1204 Geometría1210 Topología