Hernández Estrada, AdolfoMello Román, Jorge Daniel2023-06-172023-06-172021-05-07https://hdl.handle.net/20.500.14352/11562Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, leída el 15-01-2021La regresión de mínimos cuadrados parciales (PLS) es un método lineal que busca predecir un conjunto de variables dependientes a partir de un conjunto de predictores, extrayendo factores ortogonales que maximizan la capacidad predictiva, también llamados componentes. Cuando las estructuras de datos exhiben variaciones no lineales, se recurre a la regresión de mínimos cuadrados parciales con kernel (KPLS), que transforma los conjuntos de datos originales a un espacio de características de dimensionalidad arbitraria donde sea posible la generación de un modelo lineal. Una dificultad recurrente al implementar la regresión KPLS es determinar el número de componentes y los parámetros de la función kernel que maximizan su desempeño..Partial Least Squares (PLS) regression is a linear method that seeks to predict a set of dependent variables from a set of predictors by extracting orthogonal factors that maximize predictive ability, also called components. When data structures exhibit non-linear variations, Kernel Partial Least Squares (KPLS) regression is used, which transforms the original data sets into an arbitrarily dimensioned feature space where a linear model can be generated. A recurring difficulty in implementing KPLS regression is determining the number of components and the parameters of the kernel function that maximize its performance...spaOptimización de la regresión de mínimos cuadrados parciales con funciones Kerneldoctoral thesisopen access519.654(043.2)Mínimos cuadradosLeast squaresAnálisis numérico1206 Análisis Numérico