Maciá Barber, Enrique AlfonsoDomínguez-Adame Acosta, Francisco2023-06-202023-06-201996-04-15[1] S. Ostlund and R. Pandit, Phys. Rev. B 29, 1394 (1984). [2] M. Kohmoto and J. R. Banavar, Phys. Rev. B 34, 563 (1986). [3] M. Kohmoto, B. Sutherland, and C. Tang, Phys. Rev. B 35, 1020 (1987). [4] M. Severin, M. Dulea, and R. Riklund, J. Phys. Condens. Matter 1, 8851 (1989). [5] C. S. Ryu, G. Y. Oh, and M. H. Lee, Phys. Rev. B 46, 5162 (1992). [6] W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, Phys. Rev. Lett. 72, 633 (1994). [7] V. Kumar and G. Ananthakrishna, Phys. Rev. Lett. 59, 1476 (1987). [8] X. C. Xie and S. Das Sarma, Phys. Rev. Lett. 60, 1585 (1988); G. Ananthakrishna and V. Kumar, Phys. Rev. Lett. 60, 1586 (1988). [9] V. Kumar, J. Phys. Condens. Matter 2, 1349 (1990). [10] A. Chakrabarti, S. N. Karmakar, and R. K. Moitra, Phys. Lett. A 168, 301 (1992); G. Y. Oh, C. S. Ryu, and M. H. Lee, J. Phys. Condens. Matter 4, 8187 (1992); A. Chakrabarti, S. N. Karmakar, and R. K. Moitra, Phys. Rev. B 50, 13 276 (1994). [11] S. Sil, S. N. Karmakar, R. K. Moitra, and A. Chakrabarti, Phys. Rev. B 48, 4192 (1993). [12] A. Süto, J. Stat. Phys. 56, 525 (1989); J. Bellisard, B. Iochum, E. Scoppola, and D. Testard, Commun. Math. Phys. 125, 527 (1989). [13] J. Bellisard, A. Bovier, and J.-M. Ghez, Commun. Math. Phys. 135, 379 (1991); A. Bovier and J.-M. Ghez, Commun. Math. Phys. 158, 45 (1993). [14] A. Bovier and J. M. Ghez, J. Phys. A 28, 2313 (1995). [15] B. Iochum and D. Testard, J. Stat. Phys. 65, 715 (1991). [16] E. Maciá and F. Domínguez-Adame, Phys. Rev. B 50, 16 856 (1994); F. Domínguez-Adame, E. Maciá, and A. Sánchez, Phys. Rev. B 51, 878 (1995). [17] Q. Niu and F. Nori, Phys. Rev. Lett. 57, 2057 (1986); Q. Niu and F. Nori, Phys. Rev. B 42, 10 329 (1990); F. Piéchon, M. Benakli, and A. Jagannathan, Phys. Rev. Lett. 74, 5248 (1995). [18] E. Maciá, F. Domínguez-Adame, and A. Sánchez, Phys. Rev. E 50, 679 (1994), and references therein. [19] C. Sire and R. Mosseri, J. Phys. (Paris) 51, 1569 (1990). [20] See, for example, J. M. Luck, in Fundamental Problems in Statisitical Mechanics VIII (Elsevier, New York, 1994). [21] R. Landauer, IBM J. Res. Dev. 1, 223 (1957). [22] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, Phys. Rev. A 33, 1141 (1986); A. Sánchez, E. Maciá, and F. Domı´nguez-Adame, Phys. Rev. B 49, 147 (1994). [23] A. Chakrabarti, S. N. Karmakar, and R. K. Moitra, Phys. Rev. Lett. 74, 1403 (1995).0031-900710.1103/PhysRevLett.76.2957https://hdl.handle.net/20.500.14352/59398© 1996 The American Physical Society. We are greatly indebted to Roland Ketzmerick for very useful discussions and detailed calculations as well as for his good manners in science. It is with great pleasure that we thank Angel Sánchez for illuminating conversations. We also thank Victoria Hernández for interesting comments. This work is supported by CICYT under Project No. MAT95-0325.We report on a new class of critical states in the energy spectrum of general Fibonacci systems. By introducing a transfer matrix renormalization technique, we prove that the charge distribution of these states spreads over the whole system, showing transport properties characteristic of electronic extended states. Our analytical method is a first step to find out the link between the spatial structure of critical wave functions and their related transport properties.engPhysical nature of critical wave functions in Fibonacci systemsjournal articlehttp://dx.doi.org/10.1103/PhysRevLett.76.2957http://journals.aps.orgopen access538.9Extended electronic statesSpectral propertiesRenormalization-groupQuasi-crystalsCantor-setLatticesChainSuperlatticeModelFísica de materiales