Carmona Jiménez, José LuisCastrillón López, MarcoDíaz Ramos, J.C.2024-09-092024-09-092025Carmona Jiménez, J.L., Castrillón López, M. & Díaz-Ramos, J.C. The Ambrose-Singer Theorem for Cohomogeneity One Riemannian Manifolds. Transformation Groups (2025). https://doi.org/10.1007/s00031-025-09927-xhttps://hdl.handle.net/20.500.14352/1080052024 Acuerdos transformativos CRUEWe characterize isometric actions when the principal orbits are hypersurfaces by the existence of a linear connection satisfying a set of covariant equations. We use this results to characterize isomorphic cohomogeneity one foliations in terms of these connections and give explicit examples of these objects in the Euclidean space and the real hyperbolic space.engThe Ambrose-Singer Theorem for cohomogeneity one Riemannian manifoldsjournal articlehttps://doi.org/10.1007/s00031-025-09927-xopen accessAmbrose-Singer theoremCohomogeneity one actionsCanonical connectionGeometría diferencial1204.04 Geometría Diferencial