Ansemil, José María M.Blasco Contreras, FernandoPonte, Socorro2023-06-202023-06-202004J.M. Ansemil, F. Blasco, S. Ponte: (BB) properties on Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 25 (2000), 307–316. J.M. Ansemil, K. Floret: The symmetric tensor product of a direct sum of locally convex spaces. Studia Math. 129 (1998), 285–295. J.M. Ansemil, J. Taskinen: On a problem of topologies infinite dimensional holomorphy. Arch. Math. (Basel) 54 (1990), 61–64. K.D. Bierstedt, J. Bonet: Density conditions in Fréchet and (DF) spaces. Rev. Mat. Complutense 2 (1989), 59–75. Stefan Heinrich’s density condition for Fréchet spaces. Math. Nachr. 135 (1988), 149–180. J. Bonet, J.C. Díaz, J. Taskinen: Tensor stable Fréchet and (DF)-spaces. Collect. Math. 42, 3 (1991), 199–236. A. Defant, A. Peris: Maurey’s extension theorem and Grothendieck’s “problème des topologies”. J. London Math. Soc. 58 (1998), no.2, 679–696. V. Dimant, I. Zalduendo: Bases in spaces of multilinear forms over Banach spaces. J. Math. Anal. Appl. 200 (1996), no.3, 548–566. S. Dineen: Complex analysis in locally convex spaces. North–Holland Math. Studies 57,Amsterdam 1981. Holomorphic functions and the (BB) property. Math. Scand. 74 (1994), 215–236. Complex analysis on infinite dimensional spaces. Springer-Verlag Monograph Series, 1999. Holomorphic functions on Fréchet–Montel spaces. J. Math. Anal. Appl. 163, 2 (1992), 581–587. A. Grothendieck: Produits tensoriels topologiques et espaces nucleaires. Memoirs AMS 16 (1955). J.R. Holub: Hilbertian operators and reflexive tensor products. Pacific J. Math. 36 (1971), 185–194. J. Jarchow: Locally convex spaces. B.G. Teubner, Stuttgart, 1981. R. Ryan: Applications of topological tensor products to infinite dimensional holomorphy. Ph.D. Thesis, Trinity College, Dublin, 1980.84-7491-767-0https://hdl.handle.net/20.500.14352/53312Properties (BB)n, n = 2, 3, ... on a locally convex space (see the definition below) have been recently introduced ([10]). They are interesting, among other things, in connection with the study of natural topologies on spaces of polynomials, multilinear and holomorphic mappings. As it is proved in [1] there are Fr´echet spaces with the (BB)2 property but without the (BB)3 property. Here, for a given n = 3, ... we get an space without the property (BB)n+1 and study an equivalent condition for that space to have the (BB)n propertyspaPropiedades (BB)n y topologías en P(nE)book partopen access512Tensor productSpaces of polynomials.Álgebra1201 Álgebra