Campos, J.R.Jiménez Rodríguez, P.Muñoz-Fernández, Gustavo A.Pellegrino, D.Seoane Sepúlveda, Juan Benigno2023-06-192023-06-1920150024-379510.1016/j.laa.2014.09.040https://hdl.handle.net/20.500.14352/33772Abstract. It was recently proved by Bayart et al. that the complex polynomial Bohnenblust–Hille inequality is subexponential. We show that, for real scalars, this does no longer hold. Moreover, we show that, if DR,m stands for the real Bohnenblust–Hille constant for m-homogeneous polynomials, then lim sup(m) D-R,m(1/m) = 2, a quite surprising result having in mind that the exact value of the Bohnenblust-Hille constants is still a mystery.engOn the real polynomial Bohnenblust-Hille inequalityjournal articlehttp://arxiv.org/pdf/1209.4632v7.pdfhttp://www.sciencedirect.com/open access517.98Bohnenblust–Hille inequalityAbsolutely summing operators.Análisis funcional y teoría de operadores