Magdas, Dana A.Cremades Rodríguez, Ana IsabelPiqueras de Noriega, Javier2023-06-202023-06-202006-11-011. Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001). 2. X. Y. Kong and Z. L. Wang, Solid State Commun. 128, 1 (2003). 3. C. Liang, G. Meng, Y. Lei, F. Phillipp, and L. Zhang, Adv. Mater. (Weinheim, Ger.)13, 1330 (2001). 4. L. Dai, X. L. Chen, J. K. Jian, M. He, T. Zhou, and B. Q. Hu, Appl. Phys. A: Mater. Sci. Process. A75, 687 (2002). 5. X. S. Peng, Y. W. Wang, J. Zhang, X. F. Wang, L. X. Zhao, G. W. Meng, and L. D. Zhang, Appl. Phys. A: Mater. Sci. Process. 74, 437 (2002). 6. F. Zeng, X. Zhang, J. Wang, L. Wang, and L. Zhang, Nanotechnology 15, 596 (2004). 7. D. A. Magdas, A. Cremades, and J. Piqueras, Appl. Phys. Lett. 88, 113107 (2006). 8. D. Maestre, A. Cremades, and J. Piqueras, J. Appl. Phys. 97, 44316 (2005). 9. E. Nogales, B. Méndez, and J. Piqueras, Appl. Phys. Lett. 86, 113112 (2005). 10. J. Grym, P. Fernández, and J. Piqueras, Nanotechnology 16, 931 (2005). 11. P. Hidalgo, B. Méndez, and J. Piqueras, Nanotechnology 16, 2521 (2005). 12. H. Jia, Y. Zhang, X. Chen, J. Shu, X. Luo, Z. Zhang, and D. Yu, Appl. Phys. Lett. 82, 4146 (2003). 13. P. Guha, S. Kar, and S. Chaudhuri, Appl. Phys. Lett. 85, 3851 (2004). 14. C. L. Hsin, J. H. He, and L. J. Chen, Appl. Surf. Sci. 244, 101 (2005). 15. P. X. Gao, C. S. Lao, W. L. Hughes, and Z. L. Wang, Chem. Phys. Lett. 408, 174 (2005). 16. J. Zhou, Y. Ding, S. Z. Deng, L. Gong, N. S. Xu, and Z. L. Wang, Adv. Mater. (Weinheim, Ger.) 17, 2107 (2005). 17. R. Yang and Z. L. Wang, Solid State Commun. 134, 741 (2005). 18. J. Lao, J. Huang, D. Wang, and Z. Ren, Adv. Mater. (Weinheim, Ger.) 16, 65 (2004). 19. M. S. Lee, W. C. Choi, E. K. Kim, C. K. Kim, and S. K. Min, Thin Solid Films 279, 1 (1996). 20. T. L. Tansley and C. P. Foley, J. Appl. Phys. 59, 3241 (1986). 21. V. Yu. Davidov et al., Phys. Status Solidi B 229, R1 (2002). 22. J. Wu et al., Appl. Phys. Lett. 80, 3967 (2002). 23. T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett. 81, 1246 (2002).0021-897910.1016/j.apradiso.2006.07.010https://hdl.handle.net/20.500.14352/50835© 2006 American Institute of Physics This work has been supported by EU Marie Curie program (HPMT-CT-2001-00215) by MEC (Project MAT-2003- 00455), and by CAM (Project GR/MAT 630-04). One of the authors (D.A.M.) acknowledges the Marie Curie fellowship in the frame of the HPMT-CT-2001-00215 project.Elongated In2O3 micro- and nanostructures have been grown by two-step thermal treatments of compacted InN powder, at temperatures between 350 and 700 degrees C. Different thermal treatments have been found to induce the growth of structures with different sizes and morphologies as wires, rods, or arrows. The experimental conditions leading to the different structures, as well as the evolution of the structures during the treatments, have been investigated. Some treatments lead to large scale formation of three dimensional networks of the mentioned structures. The mechanism of network formation is discussed. The structures have been characterized by cathodoluminescence, scanning electron microscopy, and x-ray diffraction.engThree dimensional nanowire networks and complex nanostructures of indium oxidejournal articlehttp://jap.aip.org/resource/1/japiau/v100/i9/p094320_s1http://jap.aip.orgopen access538.9Fundamental-Band GapIn2o3 NanowiresGrowthInnZnoLuminescenceNanobeltsEmissionFísica de materiales