Mendoza Casas, José2023-06-202023-06-201992-050305-004110.1017/S0305004100075605https://hdl.handle.net/20.500.14352/57657Let E be a Banach space, let (OMEGA, SIGMA, mu) a finite measure space, let 1 < p < infinity and let L(p)(mu; E) the Banach space of all E-valued p-Bochner mu-integrable functions with its usual norm. In this note it is shown that E contains a complemented subspace isomorphic to l1 if (and only if ) L(p)(mu; E) does. An extension of this result is also given.engComplemented copies of L1 in Lp(μ;E).journal articlehttp://journals.cambridge.org/abstract_S0305004100075605http://journals.cambridge.org/restricted access517.982.2block sequencefinite measure spacecomplemented subspaceAnálisis funcional y teoría de operadores