Maciá Barber, Enrique AlfonsoDomínguez-Adame Acosta, FranciscoSánchez, Angel2023-06-202023-06-201994-04-011. M. Kohmoto, L. P. Kadanoff, and C. Tang, Phys. Rev. Lett. 50, 1870 (1983). 2. S. Ostlund and R. Pandit, Phys. Rev. B 29, 1394 (1984). 3. S. N. Karmakar, A. Chakrabarti, and R. K. Moitra, J. Phys. Condens. Matter 1, 1423 (1989). 4. G. Y. Oh, C. S. Ryu, and M. H. Lee, J. Phys. Condens. Matter 4, 8187 (1992). 5. M. Severin and R. Riklund, Phys. Rev. B 39, 10 362 (1989). 6. Y. Kim, M. H. Lee, and M. Y. Choi, Phys. Rev. B 40, 2581 (1989). 7. R. Merlin, K. Bajema, R. Clarke, F. -Y. Juang, and P. k. Bhattacharya, Phys. Rev. Lett 55, 1768.(1985). 8. J. Todd, R. Merlin, R. Clarke, K. M. Mohanty, and J. D. Axe, Phys. Rev. Lett. 5T, 1157 (1986). 9. F. Laruelle and B. Etienne, Phys. Rev. B 3T, 4816 (1988). 10. M. Nakayama, H. Kato, and S. Nakashima, Phys. Rev. B 36, 3472 (1987). 11. K. Kono, S. Nakada, Y. Narahara, and Y. Ootuka, J. Phys. Soc. Jpn. 60, 368 (1991). 12. D. Tuet, M. Potemski, Y. Y. Wang, J. C. Maan, L. Tapfer, and K. Ploog, Phys. Rev. Lett. 66, 2128 (1991). 13. A. Chakrabarti, S. N. Karmakar, and R. K. Moitra, Phys. Lett. A 168, 301 (1992). 14. P. Hawrylak and J. Quinn, Phys. Rev. Lett. 57, 380 (1986). 15. H. Hiramoto and M. Kohmoto, Phys. Rev. Lett. B2, 2714 (1989). 16. A. Yamaguchi, T. Saiki, T. Ninomiya, K. Missa, and T. Kobayashi, Solid State Commun. 75, 955 (1990). 17. S. Katsumoto, N. Sano, and S. Kobayashi, Solid State Commun. 85, 223 (1993). 18. V. Kumar, J. Phys. Condens. Matter 2, 1349 (1990). 19. F. Domínguez-Adame, J. Phys. Condens. Matter 1, 109 (1989). 20. P. Erdös and R. C. Herndon, Helv. Phys. Acta 50, 513 (1977). 21. R. E. Borland, Proc. R. Soc. London Ser. A 274, 529 (1963). 22. J. B. SokolofF, Phys. Rep. 126, 189 (1985). 23. Y. Liu and R. Riklund, Phys. Rev. B 35, 6034 (1987). 24. Y. Liu and W. Sritrakool, Phys. Rev. B 43, 1110 (1991). 25. N. Niu and F. Nori, Phys. Rev. Lett. 57, 2057 (1986); Phys. Rev. B 42, 10329 (1990). 26.R. Landauer, IBM J. Res. Dev. 1, 223 (1957). 27. S. Das Sarma and X. C. Xie, Phys. Rev. B 3T, 1097 (1988). 28. H. L. Engquist and P. W. Anderson, Phys. Rev. B24, 1151 (1981).0163-182910.1103/PhysRevB.49.9503https://hdl.handle.net/20.500.14352/59397© 1994 The American Physical Society. A.S. is partially supported by DGICy T (Spain) through Project No. PB92-0248, and by European Union through NETWORK nonlinear Spatio-Temporal Structures in Semiconductors, Fluids, and Oscillator EnsemblesWe derive a discrete Hamiltonian describing a Fibonacci superlattice in which the electronic potential is taken to be an array of equally spaced delta potentials, whose strengths modulate the chemical composition in the growth direction. In this model both diagonal and off-diagonal elements of the Hamiltonian matrix become mutually related through the potential strengths. The corresponding energy spectrum and related magnitudes, such as the Lyapunov coefficient, transmission coefficient, and Landauer resistance, exhibit a highly fragmented, self-similar nature. We investigate the influence of the underlying spectrum structure on the dc conductance at different temperatures obtaining analytical expressions which relate special features of the dc conductance with certain parameters that characterize the electronic spectrum of Fibonacci superlattices.engEffects of the electronic structure on the dc conductance of Fibonacci superlatticesjournal articlehttp://dx.doi.org/10.1103/PhysRevB.49.9503http://journals.aps.orgopen access538.9One-dimensional quasicrystalsQuasiperiodic superlatticesRenormalization-groupEnergy-spectrumWave-functionStatesLocalizationLatticesCrystalsSystemFísica de materiales