Junge, MariusPalazuelos Cabezón, CarlosPérez García, DavidVillanueva Díez, IgnacioWolf, Michael M.2023-06-202023-06-202010-12Junge, M., Palazuelos Cabezón, C., Pérez García, D., Villanueva Díez, I., Wolf, M. M. «Unbounded Violations of Bipartite Bell Inequalities via Operator Space Theory». Communications in Mathematical Physics, vol. 300, n.o 3, diciembre de 2010, pp. 715-39. DOI.org (Crossref), https://doi.org/10.1007/s00220-010-1125-5.0010-361610.1007/s00220-010-1125-5https://hdl.handle.net/20.500.14352/41777In this work we show that bipartite quantum states with local Hilbert space dimension n can violate a Bell inequality by a factor of order Ω(√n∕Log2n) when observables with n possible outcomes are used. A central tool in the analysis is a close relation between this problem and operator space theory and, in particular, the very recent noncommutative Lp embedding theory. As a consequence of this result, we obtain better Hilbert space dimension witnesses and quantum violations of Bell inequalities with better resistance to noise.engUnbounded violations of bipartite Bell Inequalities via Operator Space theoryjournal articlehttps//doi.org/10.1007/s00220-010-1125-5http://link.springer.com/article/10.1007/s00220-010-1125-5restricted access517.982.22Banach-spacesQuantum entanglementQuantum PhysicsAnálisis matemáticoTeoría de los quantaFísica matemáticaTeoría cuántica1202 Análisis y Análisis Funcional2210.23 Teoría Cuántica