Aron, Richard M.Pérez García, DavidSeoane Sepúlveda, Juan Benigno2023-06-202023-06-2020060039-322310.4064/sm175-1-5https://hdl.handle.net/20.500.14352/50496We show that, given a set E subset of T of measure zero, the set of continuous functions whose Fourier series expansion is divergent at any point t is an element of E is dense-algebrable, i.e. there exists an infinite-dimensional, infinitely generated dense subalgebra, of C(T) every non-zero element of which has a Fourier series expansion divergent in E.spaAlgebrability of the set of non-convergent Fourier seriesjournal articlehttp://webmail.impan.gov.pl/cgi-bin/sm/pdf?sm175-1-05open access517.98Fourier seriesDivergent seriesLineabilitySpaceabilityAlgebrabilityAnálisis funcional y teoría de operadores