Izquierdo Gil, María AmparoFernández Pineda, CristóbalLorenz, M. G.2023-06-202023-06-202008-08-15[1] K.W. Lawson, D.R. Lloyd, Review: membrane distillation, J. Membr. Sci. 124 (1997) 125. [2] M.A. Izquierdo Gil, M.C. García Payo, C. Fernández Pineda, Direct contact membrane distillation of sugar aqueous solutions, Sep. Sci. Technol. 34 (9) (1999) 1773–1801. [3] C. Fernández Pineda, M.A. Izquierdo Gil, M.C. García Payo, Gas permeation and direct contact membrane distillation experiments and their analysis using different models, J. Membr. Sci. 198 (2002) 33–49. [4] M.A. Izquierdo Gil, M.C. García Payo, C. Fernández Pineda, Air gap membrane distillation of sugar aqueous solutions, J. Membr. Sci. 155 (1999) 291–307. [5] M. Khayet, P. Godino, J.I. Mengual, Nature of flow on sweeping gas membrane distillation, J. Membr. Sci. 170 (2000) 243–255. [6] M. Khayet, M.P. Godino, J.I. Mengual, Theoretical and experimental studies on desalination using sweeping gas membrane distillation method, Desalination 157 (2003) 297–305. [7] M.A. Izquierdo Gil, G. Jonsson, Factors affecting flux and ethanol separation performance in vacuum membrane distillation, J. Membr. Sci. 214 (2003) 113–130. [8] R.W. Schofield, A.G. Fane, C.J.D. Fell, Heat and mass transfer in membrane distillation, J. Membr. Sci. 33 (1987) 299–313. [9] R.W. Schofield, A.G. Fane, C.J.D. Fell, R. Macoun, Factors affecting flux in membrane distillation, Desalination 77 (1990) 279–294. [10] K.W. Lawson, D.R. Lloyd, Membrane distillation II. Direct contact MD, J. Membr. Sci. 120 (1996) 123–133. [11] M.S. El-Bourawi, Z. Ding, R. Ma, M. Khayet, A framework for better understanding membrane distillation separation process, J. Membr. Sci. 285 (2006) 4–29. [12] M.C. García Payo, M.A. Izquierdo Gil, C. Fernández Pineda, Air gap membrane distillation of aqueous alcohol solutions, J. Membr. Sci. 169 (2000) 61–80. [13] F. Laganà, G. Barbieri, E. Drioli, Direct contact membrane distillation: modelling and concentration experiments, J. Membr. Sci. 166 (2000) 1–11. [14] J. Phattaranawik, R. Jiraratanon, A.G. Fane, Heat transport and membrane distillation coefficients in direct contact membrane distillation, J. Membr. Sci. 212 (2003) 177–193. [15] E.A. Mason, A.P. Malinauskas, Gas Transport in Porous Media: The Dusty-Gas Model, Elsevier, Amsterdam, 1983. [16] B. Ravindra Babu, N.K. Rastogi, K.S.M.S. Raghavarao, Mass transfer in osmotic membrane distillation of phycocyanin and sweet-lime juice, J. Membr. Sci. 272 (2006) 58–69. [17] E.A.Mason,A.P. Malinauskas, R.B. Evans III, Flowand diffusion of gases in porous media, J. Chem. Phys. 46 (8) (1967) 3199–3216. [18] M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht, 1991. [19] A. Bejan, Convection Heat Transfer, John Wiley & Sons, New York, 1984. [20] A.J. Chapman, Heat Transfer, Macmillan Publishing Co., Inc., 1974. [21] M.G. Lorenz, M.A. Izquierdo Gil, R. Sánchez Reillo, C. Fernández Pineda, Single CMOS sensor system for high resolution double volume measurement applied to membrane distillation system, in: Oral Communication, IS&T/SPIE Symposium on Electronic Imaging, San Jose, California, USA, 2007. [22] M.A. Izquierdo Gil, M.C. García Payo, C. Fernández Pineda, Sobre la influencia de la temperatura en los parámetros característicos de los mecanismos de Knudsen y Poiseuille en el transporte a través de membranas, Póster, XXIX Reunión Bienal de la Real Sociedad Española de Física”, 2003. [23] J.P. Holman, Heat Transfer, McGraw-Hill, New York, 1997. [24] M.C. Porter, Concentration polarization with membrane ultrafiltration, Ind. Eng. Chem., Prod. Res. Dev. 11 (1972) 234–248. [25] L. Martínez Díez, M.I. Vázquez González, F.J. Florido Díaz, Study of membrane distillation using channel spacers, J. Membr. Sci. 144 (1998) 45–56. [26] R.W. Schofield, A.G. Fane, C.J.D. Fell, Gas and vapour transport through microporous membranes. II. Membrane distillation, J. Membr. Sci. 53 (1990) 173–1850376-738810.1016/j.memsci.2008.05.018https://hdl.handle.net/20.500.14352/51019© 2008 Elsevier B.V. The authors wish to thank CICYT (Spain), Projects PB-98-07-88 and BFM2003-07197, for the financial support accorded to this work.Direct contact membrane distillation (DCMD) experiments using distilled water are reported. Influence on the process of feed and permeate flow rates through the cell has been investigated in a wide flow range, from 2 to 8l/min. Two main effects have been studied, its effect on the heat transfer coefficient and on the effective membrane thickness. An empiric dependence of the membrane thickness with linear velocity through the cell has been included in the equation for mass flux through the membrane obtained from the "Dusty-Gas" model with satisfactory results.engFlow rate influence on direct contact membrane distillation experiments: Different empirical correlations for Nusselt numberjournal articlehttp://dx.doi.org/10.1016/j.memsci.2008.05.018http://www.sciencedirect.com/restricted access536Direct Contact Membrane DistillationFlow Rate through the CellHeat TransferNusselt Number"Dusty-Gas" ModelTermodinámica2213 Termodinámica