Artal Bartolo, EnriqueCassou-Noguès, PierretteLuengo Velasco, IgnacioMelle Hernández, AlejandroBrasselet, J.P.Cisneros Molina, J.L.Massey, D.Seade, J.Teissier, B.2023-06-202023-06-202008978-0-8218-4458-810.1090/conm/474https://hdl.handle.net/20.500.14352/53144Conference: International Conference on Geometry and Topology of Singularities Location: Cuernavaca, MEXICO Date: JAN 08-26, 2007-2008In this article we show that for a given, reduced or non reduced, germ of a complex plane curve, there exists a local system of coordinates such that its log-canonical threshold at the singularity can be explicitly computed from the intersection of the boundary of its Newton polygon in such coordinates (degenerated or not) with the diagonal line.engOn the Log-Canonical Threshold for Germs of Plane Curvesbook parthttp://www.mat.ucm.es/~amelle/logcan-prep07-17.pdfrestricted access512.7Log-canonical thresholdEisenbud-Neumman diagramstopological zeta functionGeometria algebraica1201.01 Geometría Algebraica